Increasing Chemical Diversity of B2N2 Anthracene Derivatives by Introducing Continuous Multiple Boron‐Nitrogen Units

Increasing the chemical diversity of organic semiconductors is essential to develop efficient electronic devices. In particular, the replacement of carbon‐carbon (C−C) bonds with isoelectronic boron‐nitrogen (B−N) bonds allows precise modulation of the electronic properties of semiconductors without...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2023-12, Vol.135 (50), p.n/a
Hauptverfasser: Jeong, Seonghwa, Park, Eunji, Kim, Jiyeon, Park, Seok Bae, Kim, Sung Hoon, Choe, Wonyoung, Kim, Joonghan, Park, Young S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 50
container_start_page
container_title Angewandte Chemie
container_volume 135
creator Jeong, Seonghwa
Park, Eunji
Kim, Jiyeon
Park, Seok Bae
Kim, Sung Hoon
Choe, Wonyoung
Kim, Joonghan
Park, Young S.
description Increasing the chemical diversity of organic semiconductors is essential to develop efficient electronic devices. In particular, the replacement of carbon‐carbon (C−C) bonds with isoelectronic boron‐nitrogen (B−N) bonds allows precise modulation of the electronic properties of semiconductors without significant structural changes. Although some researchers have reported the preparation of B2N2 anthracene derivatives with two B−N bonds, no compounds with continuous multiple BN units have been prepared yet. Herein, we report the synthesis and characterization of a B2N2 anthracene derivative with a BNBN unit formed by converting the BOBN unit at the zigzag edge. Compared to the all‐carbon analogue 2‐phenylanthracene, BNBN anthracene exhibits significant variations in the C−C bond length and a larger highest occupied molecular orbital–lowest unoccupied molecular orbital energy gap. The experimentally determined bond lengths and electronic properties of BNBN anthracene are confirmed through theoretical calculations. The BOBN anthracene organic light‐emitting diode, used as a blue host, exhibits a low driving voltage. The findings of this study may facilitate the development of larger acenes with multiple BN units and potential applications in organic electronics. A synthetic approach has been developed to introduce multiple main group heteroatoms at the zigzag edge of the anthracene framework. BN annulation has led to a naphthalene derivative with an NBO bond. A subsequent BO annulation has been used to extend the fused aromatic ring to afford an anthracene derivative featuring an NBOB system. Changing the NBOB to an NBNB system has further increased the chemical diversity.
doi_str_mv 10.1002/ange.202314148
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2898376220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2898376220</sourcerecordid><originalsourceid>FETCH-LOGICAL-p788-a2df566b4cb231e7c4fba9679107f7f862ca99c669dfd55f57cd9762b20c439a3</originalsourceid><addsrcrecordid>eNo9kL1OwzAUhS0EEqWwMltiTrEdJ47H_lEqlbKU2XIcp3WV2sFOirLxCDwjT0JKEdPVkT6do_sBcI_RCCNEHqXd6hFBJMYU0-wCDHBCcBSzhF2CAUKURhmh_BrchLBHCKWE8QE4Lq3yWgZjt3C60wejZAVn5qh9ME0HXQknZE3g2DY7L5W2Gs60N0fZ9EiAeQeXtvGuaNVvgbONsa1rA3xpq8bUlYYT5539_vxam57bagvfrGnCLbgqZRX03d8dgs3TfDN9jlavi-V0vIpqlmWRJEWZpGlOVd5_pZmiZS55yjhGrGRllhIlOVdpyouySJIyYargLCU5QYrGXMZD8HCurb17b3VoxN613vaLgmQ8i3uWoJ7iZ-rDVLoTtTcH6TuBkTh5FSev4t-rGK8X8_8U_wDehnEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898376220</pqid></control><display><type>article</type><title>Increasing Chemical Diversity of B2N2 Anthracene Derivatives by Introducing Continuous Multiple Boron‐Nitrogen Units</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jeong, Seonghwa ; Park, Eunji ; Kim, Jiyeon ; Park, Seok Bae ; Kim, Sung Hoon ; Choe, Wonyoung ; Kim, Joonghan ; Park, Young S.</creator><creatorcontrib>Jeong, Seonghwa ; Park, Eunji ; Kim, Jiyeon ; Park, Seok Bae ; Kim, Sung Hoon ; Choe, Wonyoung ; Kim, Joonghan ; Park, Young S.</creatorcontrib><description>Increasing the chemical diversity of organic semiconductors is essential to develop efficient electronic devices. In particular, the replacement of carbon‐carbon (C−C) bonds with isoelectronic boron‐nitrogen (B−N) bonds allows precise modulation of the electronic properties of semiconductors without significant structural changes. Although some researchers have reported the preparation of B2N2 anthracene derivatives with two B−N bonds, no compounds with continuous multiple BN units have been prepared yet. Herein, we report the synthesis and characterization of a B2N2 anthracene derivative with a BNBN unit formed by converting the BOBN unit at the zigzag edge. Compared to the all‐carbon analogue 2‐phenylanthracene, BNBN anthracene exhibits significant variations in the C−C bond length and a larger highest occupied molecular orbital–lowest unoccupied molecular orbital energy gap. The experimentally determined bond lengths and electronic properties of BNBN anthracene are confirmed through theoretical calculations. The BOBN anthracene organic light‐emitting diode, used as a blue host, exhibits a low driving voltage. The findings of this study may facilitate the development of larger acenes with multiple BN units and potential applications in organic electronics. A synthetic approach has been developed to introduce multiple main group heteroatoms at the zigzag edge of the anthracene framework. BN annulation has led to a naphthalene derivative with an NBO bond. A subsequent BO annulation has been used to extend the fused aromatic ring to afford an anthracene derivative featuring an NBOB system. Changing the NBOB to an NBNB system has further increased the chemical diversity.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202314148</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anthracene ; Boron ; Carbon ; Chemical bonds ; Chemistry ; Electronic equipment ; Electronic properties ; Energy gap ; Heterocycles ; Isoelectronic Analogues ; Light emitting diodes ; Mathematical analysis ; Molecular orbitals ; Nitrogen ; Organic semiconductors ; Polycycles ; Semiconductors</subject><ispartof>Angewandte Chemie, 2023-12, Vol.135 (50), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2830-1107 ; 0000-0003-1496-2342 ; 0009-0004-6032-8443 ; 0000-0002-7783-0200 ; 0000-0003-0957-1187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202314148$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202314148$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Jeong, Seonghwa</creatorcontrib><creatorcontrib>Park, Eunji</creatorcontrib><creatorcontrib>Kim, Jiyeon</creatorcontrib><creatorcontrib>Park, Seok Bae</creatorcontrib><creatorcontrib>Kim, Sung Hoon</creatorcontrib><creatorcontrib>Choe, Wonyoung</creatorcontrib><creatorcontrib>Kim, Joonghan</creatorcontrib><creatorcontrib>Park, Young S.</creatorcontrib><title>Increasing Chemical Diversity of B2N2 Anthracene Derivatives by Introducing Continuous Multiple Boron‐Nitrogen Units</title><title>Angewandte Chemie</title><description>Increasing the chemical diversity of organic semiconductors is essential to develop efficient electronic devices. In particular, the replacement of carbon‐carbon (C−C) bonds with isoelectronic boron‐nitrogen (B−N) bonds allows precise modulation of the electronic properties of semiconductors without significant structural changes. Although some researchers have reported the preparation of B2N2 anthracene derivatives with two B−N bonds, no compounds with continuous multiple BN units have been prepared yet. Herein, we report the synthesis and characterization of a B2N2 anthracene derivative with a BNBN unit formed by converting the BOBN unit at the zigzag edge. Compared to the all‐carbon analogue 2‐phenylanthracene, BNBN anthracene exhibits significant variations in the C−C bond length and a larger highest occupied molecular orbital–lowest unoccupied molecular orbital energy gap. The experimentally determined bond lengths and electronic properties of BNBN anthracene are confirmed through theoretical calculations. The BOBN anthracene organic light‐emitting diode, used as a blue host, exhibits a low driving voltage. The findings of this study may facilitate the development of larger acenes with multiple BN units and potential applications in organic electronics. A synthetic approach has been developed to introduce multiple main group heteroatoms at the zigzag edge of the anthracene framework. BN annulation has led to a naphthalene derivative with an NBO bond. A subsequent BO annulation has been used to extend the fused aromatic ring to afford an anthracene derivative featuring an NBOB system. Changing the NBOB to an NBNB system has further increased the chemical diversity.</description><subject>Anthracene</subject><subject>Boron</subject><subject>Carbon</subject><subject>Chemical bonds</subject><subject>Chemistry</subject><subject>Electronic equipment</subject><subject>Electronic properties</subject><subject>Energy gap</subject><subject>Heterocycles</subject><subject>Isoelectronic Analogues</subject><subject>Light emitting diodes</subject><subject>Mathematical analysis</subject><subject>Molecular orbitals</subject><subject>Nitrogen</subject><subject>Organic semiconductors</subject><subject>Polycycles</subject><subject>Semiconductors</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kL1OwzAUhS0EEqWwMltiTrEdJ47H_lEqlbKU2XIcp3WV2sFOirLxCDwjT0JKEdPVkT6do_sBcI_RCCNEHqXd6hFBJMYU0-wCDHBCcBSzhF2CAUKURhmh_BrchLBHCKWE8QE4Lq3yWgZjt3C60wejZAVn5qh9ME0HXQknZE3g2DY7L5W2Gs60N0fZ9EiAeQeXtvGuaNVvgbONsa1rA3xpq8bUlYYT5539_vxam57bagvfrGnCLbgqZRX03d8dgs3TfDN9jlavi-V0vIpqlmWRJEWZpGlOVd5_pZmiZS55yjhGrGRllhIlOVdpyouySJIyYargLCU5QYrGXMZD8HCurb17b3VoxN613vaLgmQ8i3uWoJ7iZ-rDVLoTtTcH6TuBkTh5FSev4t-rGK8X8_8U_wDehnEw</recordid><startdate>20231211</startdate><enddate>20231211</enddate><creator>Jeong, Seonghwa</creator><creator>Park, Eunji</creator><creator>Kim, Jiyeon</creator><creator>Park, Seok Bae</creator><creator>Kim, Sung Hoon</creator><creator>Choe, Wonyoung</creator><creator>Kim, Joonghan</creator><creator>Park, Young S.</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2830-1107</orcidid><orcidid>https://orcid.org/0000-0003-1496-2342</orcidid><orcidid>https://orcid.org/0009-0004-6032-8443</orcidid><orcidid>https://orcid.org/0000-0002-7783-0200</orcidid><orcidid>https://orcid.org/0000-0003-0957-1187</orcidid></search><sort><creationdate>20231211</creationdate><title>Increasing Chemical Diversity of B2N2 Anthracene Derivatives by Introducing Continuous Multiple Boron‐Nitrogen Units</title><author>Jeong, Seonghwa ; Park, Eunji ; Kim, Jiyeon ; Park, Seok Bae ; Kim, Sung Hoon ; Choe, Wonyoung ; Kim, Joonghan ; Park, Young S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p788-a2df566b4cb231e7c4fba9679107f7f862ca99c669dfd55f57cd9762b20c439a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anthracene</topic><topic>Boron</topic><topic>Carbon</topic><topic>Chemical bonds</topic><topic>Chemistry</topic><topic>Electronic equipment</topic><topic>Electronic properties</topic><topic>Energy gap</topic><topic>Heterocycles</topic><topic>Isoelectronic Analogues</topic><topic>Light emitting diodes</topic><topic>Mathematical analysis</topic><topic>Molecular orbitals</topic><topic>Nitrogen</topic><topic>Organic semiconductors</topic><topic>Polycycles</topic><topic>Semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Seonghwa</creatorcontrib><creatorcontrib>Park, Eunji</creatorcontrib><creatorcontrib>Kim, Jiyeon</creatorcontrib><creatorcontrib>Park, Seok Bae</creatorcontrib><creatorcontrib>Kim, Sung Hoon</creatorcontrib><creatorcontrib>Choe, Wonyoung</creatorcontrib><creatorcontrib>Kim, Joonghan</creatorcontrib><creatorcontrib>Park, Young S.</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Seonghwa</au><au>Park, Eunji</au><au>Kim, Jiyeon</au><au>Park, Seok Bae</au><au>Kim, Sung Hoon</au><au>Choe, Wonyoung</au><au>Kim, Joonghan</au><au>Park, Young S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increasing Chemical Diversity of B2N2 Anthracene Derivatives by Introducing Continuous Multiple Boron‐Nitrogen Units</atitle><jtitle>Angewandte Chemie</jtitle><date>2023-12-11</date><risdate>2023</risdate><volume>135</volume><issue>50</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Increasing the chemical diversity of organic semiconductors is essential to develop efficient electronic devices. In particular, the replacement of carbon‐carbon (C−C) bonds with isoelectronic boron‐nitrogen (B−N) bonds allows precise modulation of the electronic properties of semiconductors without significant structural changes. Although some researchers have reported the preparation of B2N2 anthracene derivatives with two B−N bonds, no compounds with continuous multiple BN units have been prepared yet. Herein, we report the synthesis and characterization of a B2N2 anthracene derivative with a BNBN unit formed by converting the BOBN unit at the zigzag edge. Compared to the all‐carbon analogue 2‐phenylanthracene, BNBN anthracene exhibits significant variations in the C−C bond length and a larger highest occupied molecular orbital–lowest unoccupied molecular orbital energy gap. The experimentally determined bond lengths and electronic properties of BNBN anthracene are confirmed through theoretical calculations. The BOBN anthracene organic light‐emitting diode, used as a blue host, exhibits a low driving voltage. The findings of this study may facilitate the development of larger acenes with multiple BN units and potential applications in organic electronics. A synthetic approach has been developed to introduce multiple main group heteroatoms at the zigzag edge of the anthracene framework. BN annulation has led to a naphthalene derivative with an NBO bond. A subsequent BO annulation has been used to extend the fused aromatic ring to afford an anthracene derivative featuring an NBOB system. Changing the NBOB to an NBNB system has further increased the chemical diversity.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202314148</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2830-1107</orcidid><orcidid>https://orcid.org/0000-0003-1496-2342</orcidid><orcidid>https://orcid.org/0009-0004-6032-8443</orcidid><orcidid>https://orcid.org/0000-0002-7783-0200</orcidid><orcidid>https://orcid.org/0000-0003-0957-1187</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2023-12, Vol.135 (50), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2898376220
source Wiley Online Library Journals Frontfile Complete
subjects Anthracene
Boron
Carbon
Chemical bonds
Chemistry
Electronic equipment
Electronic properties
Energy gap
Heterocycles
Isoelectronic Analogues
Light emitting diodes
Mathematical analysis
Molecular orbitals
Nitrogen
Organic semiconductors
Polycycles
Semiconductors
title Increasing Chemical Diversity of B2N2 Anthracene Derivatives by Introducing Continuous Multiple Boron‐Nitrogen Units
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A12%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increasing%20Chemical%20Diversity%20of%20B2N2%20Anthracene%20Derivatives%20by%20Introducing%20Continuous%20Multiple%20Boron%E2%80%90Nitrogen%20Units&rft.jtitle=Angewandte%20Chemie&rft.au=Jeong,%20Seonghwa&rft.date=2023-12-11&rft.volume=135&rft.issue=50&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202314148&rft_dat=%3Cproquest_wiley%3E2898376220%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898376220&rft_id=info:pmid/&rfr_iscdi=true