Increasing Chemical Diversity of B2N2 Anthracene Derivatives by Introducing Continuous Multiple Boron‐Nitrogen Units
Increasing the chemical diversity of organic semiconductors is essential to develop efficient electronic devices. In particular, the replacement of carbon‐carbon (C−C) bonds with isoelectronic boron‐nitrogen (B−N) bonds allows precise modulation of the electronic properties of semiconductors without...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2023-12, Vol.135 (50), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 50 |
container_start_page | |
container_title | Angewandte Chemie |
container_volume | 135 |
creator | Jeong, Seonghwa Park, Eunji Kim, Jiyeon Park, Seok Bae Kim, Sung Hoon Choe, Wonyoung Kim, Joonghan Park, Young S. |
description | Increasing the chemical diversity of organic semiconductors is essential to develop efficient electronic devices. In particular, the replacement of carbon‐carbon (C−C) bonds with isoelectronic boron‐nitrogen (B−N) bonds allows precise modulation of the electronic properties of semiconductors without significant structural changes. Although some researchers have reported the preparation of B2N2 anthracene derivatives with two B−N bonds, no compounds with continuous multiple BN units have been prepared yet. Herein, we report the synthesis and characterization of a B2N2 anthracene derivative with a BNBN unit formed by converting the BOBN unit at the zigzag edge. Compared to the all‐carbon analogue 2‐phenylanthracene, BNBN anthracene exhibits significant variations in the C−C bond length and a larger highest occupied molecular orbital–lowest unoccupied molecular orbital energy gap. The experimentally determined bond lengths and electronic properties of BNBN anthracene are confirmed through theoretical calculations. The BOBN anthracene organic light‐emitting diode, used as a blue host, exhibits a low driving voltage. The findings of this study may facilitate the development of larger acenes with multiple BN units and potential applications in organic electronics.
A synthetic approach has been developed to introduce multiple main group heteroatoms at the zigzag edge of the anthracene framework. BN annulation has led to a naphthalene derivative with an NBO bond. A subsequent BO annulation has been used to extend the fused aromatic ring to afford an anthracene derivative featuring an NBOB system. Changing the NBOB to an NBNB system has further increased the chemical diversity. |
doi_str_mv | 10.1002/ange.202314148 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2898376220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2898376220</sourcerecordid><originalsourceid>FETCH-LOGICAL-p788-a2df566b4cb231e7c4fba9679107f7f862ca99c669dfd55f57cd9762b20c439a3</originalsourceid><addsrcrecordid>eNo9kL1OwzAUhS0EEqWwMltiTrEdJ47H_lEqlbKU2XIcp3WV2sFOirLxCDwjT0JKEdPVkT6do_sBcI_RCCNEHqXd6hFBJMYU0-wCDHBCcBSzhF2CAUKURhmh_BrchLBHCKWE8QE4Lq3yWgZjt3C60wejZAVn5qh9ME0HXQknZE3g2DY7L5W2Gs60N0fZ9EiAeQeXtvGuaNVvgbONsa1rA3xpq8bUlYYT5539_vxam57bagvfrGnCLbgqZRX03d8dgs3TfDN9jlavi-V0vIpqlmWRJEWZpGlOVd5_pZmiZS55yjhGrGRllhIlOVdpyouySJIyYargLCU5QYrGXMZD8HCurb17b3VoxN613vaLgmQ8i3uWoJ7iZ-rDVLoTtTcH6TuBkTh5FSev4t-rGK8X8_8U_wDehnEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898376220</pqid></control><display><type>article</type><title>Increasing Chemical Diversity of B2N2 Anthracene Derivatives by Introducing Continuous Multiple Boron‐Nitrogen Units</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jeong, Seonghwa ; Park, Eunji ; Kim, Jiyeon ; Park, Seok Bae ; Kim, Sung Hoon ; Choe, Wonyoung ; Kim, Joonghan ; Park, Young S.</creator><creatorcontrib>Jeong, Seonghwa ; Park, Eunji ; Kim, Jiyeon ; Park, Seok Bae ; Kim, Sung Hoon ; Choe, Wonyoung ; Kim, Joonghan ; Park, Young S.</creatorcontrib><description>Increasing the chemical diversity of organic semiconductors is essential to develop efficient electronic devices. In particular, the replacement of carbon‐carbon (C−C) bonds with isoelectronic boron‐nitrogen (B−N) bonds allows precise modulation of the electronic properties of semiconductors without significant structural changes. Although some researchers have reported the preparation of B2N2 anthracene derivatives with two B−N bonds, no compounds with continuous multiple BN units have been prepared yet. Herein, we report the synthesis and characterization of a B2N2 anthracene derivative with a BNBN unit formed by converting the BOBN unit at the zigzag edge. Compared to the all‐carbon analogue 2‐phenylanthracene, BNBN anthracene exhibits significant variations in the C−C bond length and a larger highest occupied molecular orbital–lowest unoccupied molecular orbital energy gap. The experimentally determined bond lengths and electronic properties of BNBN anthracene are confirmed through theoretical calculations. The BOBN anthracene organic light‐emitting diode, used as a blue host, exhibits a low driving voltage. The findings of this study may facilitate the development of larger acenes with multiple BN units and potential applications in organic electronics.
A synthetic approach has been developed to introduce multiple main group heteroatoms at the zigzag edge of the anthracene framework. BN annulation has led to a naphthalene derivative with an NBO bond. A subsequent BO annulation has been used to extend the fused aromatic ring to afford an anthracene derivative featuring an NBOB system. Changing the NBOB to an NBNB system has further increased the chemical diversity.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202314148</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anthracene ; Boron ; Carbon ; Chemical bonds ; Chemistry ; Electronic equipment ; Electronic properties ; Energy gap ; Heterocycles ; Isoelectronic Analogues ; Light emitting diodes ; Mathematical analysis ; Molecular orbitals ; Nitrogen ; Organic semiconductors ; Polycycles ; Semiconductors</subject><ispartof>Angewandte Chemie, 2023-12, Vol.135 (50), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2830-1107 ; 0000-0003-1496-2342 ; 0009-0004-6032-8443 ; 0000-0002-7783-0200 ; 0000-0003-0957-1187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202314148$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202314148$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Jeong, Seonghwa</creatorcontrib><creatorcontrib>Park, Eunji</creatorcontrib><creatorcontrib>Kim, Jiyeon</creatorcontrib><creatorcontrib>Park, Seok Bae</creatorcontrib><creatorcontrib>Kim, Sung Hoon</creatorcontrib><creatorcontrib>Choe, Wonyoung</creatorcontrib><creatorcontrib>Kim, Joonghan</creatorcontrib><creatorcontrib>Park, Young S.</creatorcontrib><title>Increasing Chemical Diversity of B2N2 Anthracene Derivatives by Introducing Continuous Multiple Boron‐Nitrogen Units</title><title>Angewandte Chemie</title><description>Increasing the chemical diversity of organic semiconductors is essential to develop efficient electronic devices. In particular, the replacement of carbon‐carbon (C−C) bonds with isoelectronic boron‐nitrogen (B−N) bonds allows precise modulation of the electronic properties of semiconductors without significant structural changes. Although some researchers have reported the preparation of B2N2 anthracene derivatives with two B−N bonds, no compounds with continuous multiple BN units have been prepared yet. Herein, we report the synthesis and characterization of a B2N2 anthracene derivative with a BNBN unit formed by converting the BOBN unit at the zigzag edge. Compared to the all‐carbon analogue 2‐phenylanthracene, BNBN anthracene exhibits significant variations in the C−C bond length and a larger highest occupied molecular orbital–lowest unoccupied molecular orbital energy gap. The experimentally determined bond lengths and electronic properties of BNBN anthracene are confirmed through theoretical calculations. The BOBN anthracene organic light‐emitting diode, used as a blue host, exhibits a low driving voltage. The findings of this study may facilitate the development of larger acenes with multiple BN units and potential applications in organic electronics.
A synthetic approach has been developed to introduce multiple main group heteroatoms at the zigzag edge of the anthracene framework. BN annulation has led to a naphthalene derivative with an NBO bond. A subsequent BO annulation has been used to extend the fused aromatic ring to afford an anthracene derivative featuring an NBOB system. Changing the NBOB to an NBNB system has further increased the chemical diversity.</description><subject>Anthracene</subject><subject>Boron</subject><subject>Carbon</subject><subject>Chemical bonds</subject><subject>Chemistry</subject><subject>Electronic equipment</subject><subject>Electronic properties</subject><subject>Energy gap</subject><subject>Heterocycles</subject><subject>Isoelectronic Analogues</subject><subject>Light emitting diodes</subject><subject>Mathematical analysis</subject><subject>Molecular orbitals</subject><subject>Nitrogen</subject><subject>Organic semiconductors</subject><subject>Polycycles</subject><subject>Semiconductors</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kL1OwzAUhS0EEqWwMltiTrEdJ47H_lEqlbKU2XIcp3WV2sFOirLxCDwjT0JKEdPVkT6do_sBcI_RCCNEHqXd6hFBJMYU0-wCDHBCcBSzhF2CAUKURhmh_BrchLBHCKWE8QE4Lq3yWgZjt3C60wejZAVn5qh9ME0HXQknZE3g2DY7L5W2Gs60N0fZ9EiAeQeXtvGuaNVvgbONsa1rA3xpq8bUlYYT5539_vxam57bagvfrGnCLbgqZRX03d8dgs3TfDN9jlavi-V0vIpqlmWRJEWZpGlOVd5_pZmiZS55yjhGrGRllhIlOVdpyouySJIyYargLCU5QYrGXMZD8HCurb17b3VoxN613vaLgmQ8i3uWoJ7iZ-rDVLoTtTcH6TuBkTh5FSev4t-rGK8X8_8U_wDehnEw</recordid><startdate>20231211</startdate><enddate>20231211</enddate><creator>Jeong, Seonghwa</creator><creator>Park, Eunji</creator><creator>Kim, Jiyeon</creator><creator>Park, Seok Bae</creator><creator>Kim, Sung Hoon</creator><creator>Choe, Wonyoung</creator><creator>Kim, Joonghan</creator><creator>Park, Young S.</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2830-1107</orcidid><orcidid>https://orcid.org/0000-0003-1496-2342</orcidid><orcidid>https://orcid.org/0009-0004-6032-8443</orcidid><orcidid>https://orcid.org/0000-0002-7783-0200</orcidid><orcidid>https://orcid.org/0000-0003-0957-1187</orcidid></search><sort><creationdate>20231211</creationdate><title>Increasing Chemical Diversity of B2N2 Anthracene Derivatives by Introducing Continuous Multiple Boron‐Nitrogen Units</title><author>Jeong, Seonghwa ; Park, Eunji ; Kim, Jiyeon ; Park, Seok Bae ; Kim, Sung Hoon ; Choe, Wonyoung ; Kim, Joonghan ; Park, Young S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p788-a2df566b4cb231e7c4fba9679107f7f862ca99c669dfd55f57cd9762b20c439a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anthracene</topic><topic>Boron</topic><topic>Carbon</topic><topic>Chemical bonds</topic><topic>Chemistry</topic><topic>Electronic equipment</topic><topic>Electronic properties</topic><topic>Energy gap</topic><topic>Heterocycles</topic><topic>Isoelectronic Analogues</topic><topic>Light emitting diodes</topic><topic>Mathematical analysis</topic><topic>Molecular orbitals</topic><topic>Nitrogen</topic><topic>Organic semiconductors</topic><topic>Polycycles</topic><topic>Semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Seonghwa</creatorcontrib><creatorcontrib>Park, Eunji</creatorcontrib><creatorcontrib>Kim, Jiyeon</creatorcontrib><creatorcontrib>Park, Seok Bae</creatorcontrib><creatorcontrib>Kim, Sung Hoon</creatorcontrib><creatorcontrib>Choe, Wonyoung</creatorcontrib><creatorcontrib>Kim, Joonghan</creatorcontrib><creatorcontrib>Park, Young S.</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Seonghwa</au><au>Park, Eunji</au><au>Kim, Jiyeon</au><au>Park, Seok Bae</au><au>Kim, Sung Hoon</au><au>Choe, Wonyoung</au><au>Kim, Joonghan</au><au>Park, Young S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increasing Chemical Diversity of B2N2 Anthracene Derivatives by Introducing Continuous Multiple Boron‐Nitrogen Units</atitle><jtitle>Angewandte Chemie</jtitle><date>2023-12-11</date><risdate>2023</risdate><volume>135</volume><issue>50</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Increasing the chemical diversity of organic semiconductors is essential to develop efficient electronic devices. In particular, the replacement of carbon‐carbon (C−C) bonds with isoelectronic boron‐nitrogen (B−N) bonds allows precise modulation of the electronic properties of semiconductors without significant structural changes. Although some researchers have reported the preparation of B2N2 anthracene derivatives with two B−N bonds, no compounds with continuous multiple BN units have been prepared yet. Herein, we report the synthesis and characterization of a B2N2 anthracene derivative with a BNBN unit formed by converting the BOBN unit at the zigzag edge. Compared to the all‐carbon analogue 2‐phenylanthracene, BNBN anthracene exhibits significant variations in the C−C bond length and a larger highest occupied molecular orbital–lowest unoccupied molecular orbital energy gap. The experimentally determined bond lengths and electronic properties of BNBN anthracene are confirmed through theoretical calculations. The BOBN anthracene organic light‐emitting diode, used as a blue host, exhibits a low driving voltage. The findings of this study may facilitate the development of larger acenes with multiple BN units and potential applications in organic electronics.
A synthetic approach has been developed to introduce multiple main group heteroatoms at the zigzag edge of the anthracene framework. BN annulation has led to a naphthalene derivative with an NBO bond. A subsequent BO annulation has been used to extend the fused aromatic ring to afford an anthracene derivative featuring an NBOB system. Changing the NBOB to an NBNB system has further increased the chemical diversity.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202314148</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2830-1107</orcidid><orcidid>https://orcid.org/0000-0003-1496-2342</orcidid><orcidid>https://orcid.org/0009-0004-6032-8443</orcidid><orcidid>https://orcid.org/0000-0002-7783-0200</orcidid><orcidid>https://orcid.org/0000-0003-0957-1187</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2023-12, Vol.135 (50), p.n/a |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_2898376220 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anthracene Boron Carbon Chemical bonds Chemistry Electronic equipment Electronic properties Energy gap Heterocycles Isoelectronic Analogues Light emitting diodes Mathematical analysis Molecular orbitals Nitrogen Organic semiconductors Polycycles Semiconductors |
title | Increasing Chemical Diversity of B2N2 Anthracene Derivatives by Introducing Continuous Multiple Boron‐Nitrogen Units |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A12%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increasing%20Chemical%20Diversity%20of%20B2N2%20Anthracene%20Derivatives%20by%20Introducing%20Continuous%20Multiple%20Boron%E2%80%90Nitrogen%20Units&rft.jtitle=Angewandte%20Chemie&rft.au=Jeong,%20Seonghwa&rft.date=2023-12-11&rft.volume=135&rft.issue=50&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202314148&rft_dat=%3Cproquest_wiley%3E2898376220%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898376220&rft_id=info:pmid/&rfr_iscdi=true |