A simple stacked ensemble machine learning model to predict naturalized catchment hydrology and allocation status
New Zealand legislation requires that Regional Councils set limits for water resource usage to manage the effects of abstractions in over-allocated catchments. We propose a simple stacked ensemble machine learning model to predict the probable naturalized hydrology and allocation status across 317 a...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Friedel, Michael J Stewart, Dave Xiao Feng Lu Stevenson, Pete Manly, Helen Dyer, Tom |
description | New Zealand legislation requires that Regional Councils set limits for water resource usage to manage the effects of abstractions in over-allocated catchments. We propose a simple stacked ensemble machine learning model to predict the probable naturalized hydrology and allocation status across 317 anthropogenically stressed gauged catchments and across 18,612 ungauged river reaches in Otago. The training and testing of ensemble machine learning models provides unbiased results characterized as very good (R2 > 0.8) to extremely good (R2 > 0.9) when predicting naturalized mean annual low flow and Mean flow. Statistical 5-fold stacking identifies varying levels of risk for managing water-resource sustainability in over-allocated catchments; for example, at the respective 5th, 25th, 50th, 75th, and 95th percentiles the number of overallocated catchments are 73, 57, 44, 23, and 22. The proposed model can be applied to inform sustainable stream management in other regional catchments across New Zealand and worldwide. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2898303065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2898303065</sourcerecordid><originalsourceid>FETCH-proquest_journals_28983030653</originalsourceid><addsrcrecordid>eNqNjU1qwzAQhUUgkNDkDgNdB1SpTp1lCSk9QPdmKk1tudLI1s_COX1d6AG6evC-7_E2Yq-0fjq1z0rtxDHnUUqpzi-qafRezK-QXZg8QS5ovskCcabwuRYBzeCYwBMmdtxDiJY8lAhTIutMAcZSE3p3X2cGixkCcYFhsSn62C-AbAG9jytzkX8fSs0Hsf1Cn-n4lw_i8e32cX0_TSnOlXLpxlgTr6hT7aXVUstzo_9n_QCiC0w_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898303065</pqid></control><display><type>article</type><title>A simple stacked ensemble machine learning model to predict naturalized catchment hydrology and allocation status</title><source>Free E- Journals</source><creator>Friedel, Michael J ; Stewart, Dave ; Xiao Feng Lu ; Stevenson, Pete ; Manly, Helen ; Dyer, Tom</creator><creatorcontrib>Friedel, Michael J ; Stewart, Dave ; Xiao Feng Lu ; Stevenson, Pete ; Manly, Helen ; Dyer, Tom</creatorcontrib><description>New Zealand legislation requires that Regional Councils set limits for water resource usage to manage the effects of abstractions in over-allocated catchments. We propose a simple stacked ensemble machine learning model to predict the probable naturalized hydrology and allocation status across 317 anthropogenically stressed gauged catchments and across 18,612 ungauged river reaches in Otago. The training and testing of ensemble machine learning models provides unbiased results characterized as very good (R2 > 0.8) to extremely good (R2 > 0.9) when predicting naturalized mean annual low flow and Mean flow. Statistical 5-fold stacking identifies varying levels of risk for managing water-resource sustainability in over-allocated catchments; for example, at the respective 5th, 25th, 50th, 75th, and 95th percentiles the number of overallocated catchments are 73, 57, 44, 23, and 22. The proposed model can be applied to inform sustainable stream management in other regional catchments across New Zealand and worldwide.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Catchments ; Hydrology ; Legislation ; Low flow ; Machine learning ; Risk levels ; Risk management ; Water resources</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Friedel, Michael J</creatorcontrib><creatorcontrib>Stewart, Dave</creatorcontrib><creatorcontrib>Xiao Feng Lu</creatorcontrib><creatorcontrib>Stevenson, Pete</creatorcontrib><creatorcontrib>Manly, Helen</creatorcontrib><creatorcontrib>Dyer, Tom</creatorcontrib><title>A simple stacked ensemble machine learning model to predict naturalized catchment hydrology and allocation status</title><title>arXiv.org</title><description>New Zealand legislation requires that Regional Councils set limits for water resource usage to manage the effects of abstractions in over-allocated catchments. We propose a simple stacked ensemble machine learning model to predict the probable naturalized hydrology and allocation status across 317 anthropogenically stressed gauged catchments and across 18,612 ungauged river reaches in Otago. The training and testing of ensemble machine learning models provides unbiased results characterized as very good (R2 > 0.8) to extremely good (R2 > 0.9) when predicting naturalized mean annual low flow and Mean flow. Statistical 5-fold stacking identifies varying levels of risk for managing water-resource sustainability in over-allocated catchments; for example, at the respective 5th, 25th, 50th, 75th, and 95th percentiles the number of overallocated catchments are 73, 57, 44, 23, and 22. The proposed model can be applied to inform sustainable stream management in other regional catchments across New Zealand and worldwide.</description><subject>Catchments</subject><subject>Hydrology</subject><subject>Legislation</subject><subject>Low flow</subject><subject>Machine learning</subject><subject>Risk levels</subject><subject>Risk management</subject><subject>Water resources</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjU1qwzAQhUUgkNDkDgNdB1SpTp1lCSk9QPdmKk1tudLI1s_COX1d6AG6evC-7_E2Yq-0fjq1z0rtxDHnUUqpzi-qafRezK-QXZg8QS5ovskCcabwuRYBzeCYwBMmdtxDiJY8lAhTIutMAcZSE3p3X2cGixkCcYFhsSn62C-AbAG9jytzkX8fSs0Hsf1Cn-n4lw_i8e32cX0_TSnOlXLpxlgTr6hT7aXVUstzo_9n_QCiC0w_</recordid><startdate>20231204</startdate><enddate>20231204</enddate><creator>Friedel, Michael J</creator><creator>Stewart, Dave</creator><creator>Xiao Feng Lu</creator><creator>Stevenson, Pete</creator><creator>Manly, Helen</creator><creator>Dyer, Tom</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231204</creationdate><title>A simple stacked ensemble machine learning model to predict naturalized catchment hydrology and allocation status</title><author>Friedel, Michael J ; Stewart, Dave ; Xiao Feng Lu ; Stevenson, Pete ; Manly, Helen ; Dyer, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28983030653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catchments</topic><topic>Hydrology</topic><topic>Legislation</topic><topic>Low flow</topic><topic>Machine learning</topic><topic>Risk levels</topic><topic>Risk management</topic><topic>Water resources</topic><toplevel>online_resources</toplevel><creatorcontrib>Friedel, Michael J</creatorcontrib><creatorcontrib>Stewart, Dave</creatorcontrib><creatorcontrib>Xiao Feng Lu</creatorcontrib><creatorcontrib>Stevenson, Pete</creatorcontrib><creatorcontrib>Manly, Helen</creatorcontrib><creatorcontrib>Dyer, Tom</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friedel, Michael J</au><au>Stewart, Dave</au><au>Xiao Feng Lu</au><au>Stevenson, Pete</au><au>Manly, Helen</au><au>Dyer, Tom</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A simple stacked ensemble machine learning model to predict naturalized catchment hydrology and allocation status</atitle><jtitle>arXiv.org</jtitle><date>2023-12-04</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>New Zealand legislation requires that Regional Councils set limits for water resource usage to manage the effects of abstractions in over-allocated catchments. We propose a simple stacked ensemble machine learning model to predict the probable naturalized hydrology and allocation status across 317 anthropogenically stressed gauged catchments and across 18,612 ungauged river reaches in Otago. The training and testing of ensemble machine learning models provides unbiased results characterized as very good (R2 > 0.8) to extremely good (R2 > 0.9) when predicting naturalized mean annual low flow and Mean flow. Statistical 5-fold stacking identifies varying levels of risk for managing water-resource sustainability in over-allocated catchments; for example, at the respective 5th, 25th, 50th, 75th, and 95th percentiles the number of overallocated catchments are 73, 57, 44, 23, and 22. The proposed model can be applied to inform sustainable stream management in other regional catchments across New Zealand and worldwide.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2898303065 |
source | Free E- Journals |
subjects | Catchments Hydrology Legislation Low flow Machine learning Risk levels Risk management Water resources |
title | A simple stacked ensemble machine learning model to predict naturalized catchment hydrology and allocation status |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A18%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20simple%20stacked%20ensemble%20machine%20learning%20model%20to%20predict%20naturalized%20catchment%20hydrology%20and%20allocation%20status&rft.jtitle=arXiv.org&rft.au=Friedel,%20Michael%20J&rft.date=2023-12-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2898303065%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898303065&rft_id=info:pmid/&rfr_iscdi=true |