Active disturbance rejection controller design for harmonic suppression in MPC optimal control based on harmonic state space modeling
Summary This paper proposes a harmonic suppression strategy for photovoltaic‐voltage source converters (PV‐VSC). The proposed method utilizes a harmonic state space (HSS) model‐combine model predictive control (MPC) algorithm, which provides a comprehensive representation of the global characteristi...
Gespeichert in:
Veröffentlicht in: | International journal of circuit theory and applications 2023-12, Vol.51 (12), p.5650-5671 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5671 |
---|---|
container_issue | 12 |
container_start_page | 5650 |
container_title | International journal of circuit theory and applications |
container_volume | 51 |
creator | Lin, Jican Liu, Shenquan Wang, Gang |
description | Summary
This paper proposes a harmonic suppression strategy for photovoltaic‐voltage source converters (PV‐VSC). The proposed method utilizes a harmonic state space (HSS) model‐combine model predictive control (MPC) algorithm, which provides a comprehensive representation of the global characteristics of AC/DC harmonic coupling impedance in photovoltaic systems. The HSS‐based converter model operates as a linear time‐varying periodic system, which allows for the implementation of MPC to optimize the HSS equation. This optimization yields voltage increments across various harmonic orders, providing feedforward compensation for the current controller. By incorporating feedback signals into the current control, harmonic compensation is achieved, resulting in improved power quality. Furthermore, a decoupled proportional resonance‐linear adaptive disturbance rejection control (PR‐LADRC) is employed to effectively mitigate steady‐state errors and decrease total harmonic distortion in the presence of DC‐side disturbances. This is accomplished by decoupling the disturbance observer from the controller and integrating the increment feedback signal derived from the MPC‐HSS. Finally, the efficacy of the proposed method and the analysis results are corroborated through numerical simulations.
This study developed a harmonic suppression strategy for PV‐VSC using HSS‐based MPC and PR‐LADRC to enhance power quality and mitigate distortion in photovoltaic systems. |
doi_str_mv | 10.1002/cta.3722 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2898287387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2898287387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2932-2912595c028f3213d67521cf8256f8d180b86cc1fb3305c60311b16859c2028d3</originalsourceid><addsrcrecordid>eNp1kM9KxDAQxoMouK6CjxDw4qXrJKFtclyK_2BFDyt4C2marlm6TU1SZR_A9zbrKp6EgYGZ3zcf8yF0TmBGAOiVjmrGSkoP0ISAKDOA8uUQTQAEzwTnxTE6CWENAJwyMUGfcx3tu8GNDXH0teq1wd6sTZq6HmvXR--6znjcmGBXPW6dx6_Kb1xvNQ7jMHgTwg61PX54qrAbot2o7leJaxVMg9P-TxRVNDgMKjltXGM6269O0VGrumDOfvoUPd9cL6u7bPF4e1_NF5mmgtGMCkJzkWugvGWUsKYoc0p0y2letLwhHGpeaE3amjHIdQGMkJoUPBeaJk3Dpuhif3fw7m00Icq1G32fLCXlglNeslRTdLmntHcheNPKwaen_FYSkLuQZQpZ7kJOaLZHP2xntv9yslrOv_kvePV-mQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898287387</pqid></control><display><type>article</type><title>Active disturbance rejection controller design for harmonic suppression in MPC optimal control based on harmonic state space modeling</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Lin, Jican ; Liu, Shenquan ; Wang, Gang</creator><creatorcontrib>Lin, Jican ; Liu, Shenquan ; Wang, Gang</creatorcontrib><description>Summary
This paper proposes a harmonic suppression strategy for photovoltaic‐voltage source converters (PV‐VSC). The proposed method utilizes a harmonic state space (HSS) model‐combine model predictive control (MPC) algorithm, which provides a comprehensive representation of the global characteristics of AC/DC harmonic coupling impedance in photovoltaic systems. The HSS‐based converter model operates as a linear time‐varying periodic system, which allows for the implementation of MPC to optimize the HSS equation. This optimization yields voltage increments across various harmonic orders, providing feedforward compensation for the current controller. By incorporating feedback signals into the current control, harmonic compensation is achieved, resulting in improved power quality. Furthermore, a decoupled proportional resonance‐linear adaptive disturbance rejection control (PR‐LADRC) is employed to effectively mitigate steady‐state errors and decrease total harmonic distortion in the presence of DC‐side disturbances. This is accomplished by decoupling the disturbance observer from the controller and integrating the increment feedback signal derived from the MPC‐HSS. Finally, the efficacy of the proposed method and the analysis results are corroborated through numerical simulations.
This study developed a harmonic suppression strategy for PV‐VSC using HSS‐based MPC and PR‐LADRC to enhance power quality and mitigate distortion in photovoltaic systems.</description><identifier>ISSN: 0098-9886</identifier><identifier>EISSN: 1097-007X</identifier><identifier>DOI: 10.1002/cta.3722</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Adaptive control ; Algorithms ; Compensation ; Control systems design ; Controllers ; Decoupling ; Disturbance observers ; Electric potential ; Feedback ; Feedforward control ; Harmonic control ; Harmonic distortion ; harmonic state space ; model predictive control ; Optimal control ; Optimization ; Photovoltaic cells ; photovoltaic‐voltage source converters ; Predictive control ; proportional resonance‐linear adaptive disturbance rejection control ; Rejection ; State space models ; Voltage</subject><ispartof>International journal of circuit theory and applications, 2023-12, Vol.51 (12), p.5650-5671</ispartof><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2932-2912595c028f3213d67521cf8256f8d180b86cc1fb3305c60311b16859c2028d3</citedby><cites>FETCH-LOGICAL-c2932-2912595c028f3213d67521cf8256f8d180b86cc1fb3305c60311b16859c2028d3</cites><orcidid>0000-0001-6769-1529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcta.3722$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcta.3722$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lin, Jican</creatorcontrib><creatorcontrib>Liu, Shenquan</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><title>Active disturbance rejection controller design for harmonic suppression in MPC optimal control based on harmonic state space modeling</title><title>International journal of circuit theory and applications</title><description>Summary
This paper proposes a harmonic suppression strategy for photovoltaic‐voltage source converters (PV‐VSC). The proposed method utilizes a harmonic state space (HSS) model‐combine model predictive control (MPC) algorithm, which provides a comprehensive representation of the global characteristics of AC/DC harmonic coupling impedance in photovoltaic systems. The HSS‐based converter model operates as a linear time‐varying periodic system, which allows for the implementation of MPC to optimize the HSS equation. This optimization yields voltage increments across various harmonic orders, providing feedforward compensation for the current controller. By incorporating feedback signals into the current control, harmonic compensation is achieved, resulting in improved power quality. Furthermore, a decoupled proportional resonance‐linear adaptive disturbance rejection control (PR‐LADRC) is employed to effectively mitigate steady‐state errors and decrease total harmonic distortion in the presence of DC‐side disturbances. This is accomplished by decoupling the disturbance observer from the controller and integrating the increment feedback signal derived from the MPC‐HSS. Finally, the efficacy of the proposed method and the analysis results are corroborated through numerical simulations.
This study developed a harmonic suppression strategy for PV‐VSC using HSS‐based MPC and PR‐LADRC to enhance power quality and mitigate distortion in photovoltaic systems.</description><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Compensation</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Decoupling</subject><subject>Disturbance observers</subject><subject>Electric potential</subject><subject>Feedback</subject><subject>Feedforward control</subject><subject>Harmonic control</subject><subject>Harmonic distortion</subject><subject>harmonic state space</subject><subject>model predictive control</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Photovoltaic cells</subject><subject>photovoltaic‐voltage source converters</subject><subject>Predictive control</subject><subject>proportional resonance‐linear adaptive disturbance rejection control</subject><subject>Rejection</subject><subject>State space models</subject><subject>Voltage</subject><issn>0098-9886</issn><issn>1097-007X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KxDAQxoMouK6CjxDw4qXrJKFtclyK_2BFDyt4C2marlm6TU1SZR_A9zbrKp6EgYGZ3zcf8yF0TmBGAOiVjmrGSkoP0ISAKDOA8uUQTQAEzwTnxTE6CWENAJwyMUGfcx3tu8GNDXH0teq1wd6sTZq6HmvXR--6znjcmGBXPW6dx6_Kb1xvNQ7jMHgTwg61PX54qrAbot2o7leJaxVMg9P-TxRVNDgMKjltXGM6269O0VGrumDOfvoUPd9cL6u7bPF4e1_NF5mmgtGMCkJzkWugvGWUsKYoc0p0y2letLwhHGpeaE3amjHIdQGMkJoUPBeaJk3Dpuhif3fw7m00Icq1G32fLCXlglNeslRTdLmntHcheNPKwaen_FYSkLuQZQpZ7kJOaLZHP2xntv9yslrOv_kvePV-mQ</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Lin, Jican</creator><creator>Liu, Shenquan</creator><creator>Wang, Gang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6769-1529</orcidid></search><sort><creationdate>202312</creationdate><title>Active disturbance rejection controller design for harmonic suppression in MPC optimal control based on harmonic state space modeling</title><author>Lin, Jican ; Liu, Shenquan ; Wang, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2932-2912595c028f3213d67521cf8256f8d180b86cc1fb3305c60311b16859c2028d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Compensation</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Decoupling</topic><topic>Disturbance observers</topic><topic>Electric potential</topic><topic>Feedback</topic><topic>Feedforward control</topic><topic>Harmonic control</topic><topic>Harmonic distortion</topic><topic>harmonic state space</topic><topic>model predictive control</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Photovoltaic cells</topic><topic>photovoltaic‐voltage source converters</topic><topic>Predictive control</topic><topic>proportional resonance‐linear adaptive disturbance rejection control</topic><topic>Rejection</topic><topic>State space models</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Jican</creatorcontrib><creatorcontrib>Liu, Shenquan</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of circuit theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Jican</au><au>Liu, Shenquan</au><au>Wang, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active disturbance rejection controller design for harmonic suppression in MPC optimal control based on harmonic state space modeling</atitle><jtitle>International journal of circuit theory and applications</jtitle><date>2023-12</date><risdate>2023</risdate><volume>51</volume><issue>12</issue><spage>5650</spage><epage>5671</epage><pages>5650-5671</pages><issn>0098-9886</issn><eissn>1097-007X</eissn><abstract>Summary
This paper proposes a harmonic suppression strategy for photovoltaic‐voltage source converters (PV‐VSC). The proposed method utilizes a harmonic state space (HSS) model‐combine model predictive control (MPC) algorithm, which provides a comprehensive representation of the global characteristics of AC/DC harmonic coupling impedance in photovoltaic systems. The HSS‐based converter model operates as a linear time‐varying periodic system, which allows for the implementation of MPC to optimize the HSS equation. This optimization yields voltage increments across various harmonic orders, providing feedforward compensation for the current controller. By incorporating feedback signals into the current control, harmonic compensation is achieved, resulting in improved power quality. Furthermore, a decoupled proportional resonance‐linear adaptive disturbance rejection control (PR‐LADRC) is employed to effectively mitigate steady‐state errors and decrease total harmonic distortion in the presence of DC‐side disturbances. This is accomplished by decoupling the disturbance observer from the controller and integrating the increment feedback signal derived from the MPC‐HSS. Finally, the efficacy of the proposed method and the analysis results are corroborated through numerical simulations.
This study developed a harmonic suppression strategy for PV‐VSC using HSS‐based MPC and PR‐LADRC to enhance power quality and mitigate distortion in photovoltaic systems.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cta.3722</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-6769-1529</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-9886 |
ispartof | International journal of circuit theory and applications, 2023-12, Vol.51 (12), p.5650-5671 |
issn | 0098-9886 1097-007X |
language | eng |
recordid | cdi_proquest_journals_2898287387 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Adaptive control Algorithms Compensation Control systems design Controllers Decoupling Disturbance observers Electric potential Feedback Feedforward control Harmonic control Harmonic distortion harmonic state space model predictive control Optimal control Optimization Photovoltaic cells photovoltaic‐voltage source converters Predictive control proportional resonance‐linear adaptive disturbance rejection control Rejection State space models Voltage |
title | Active disturbance rejection controller design for harmonic suppression in MPC optimal control based on harmonic state space modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20disturbance%20rejection%20controller%20design%20for%20harmonic%20suppression%20in%20MPC%20optimal%20control%20based%20on%20harmonic%20state%20space%20modeling&rft.jtitle=International%20journal%20of%20circuit%20theory%20and%20applications&rft.au=Lin,%20Jican&rft.date=2023-12&rft.volume=51&rft.issue=12&rft.spage=5650&rft.epage=5671&rft.pages=5650-5671&rft.issn=0098-9886&rft.eissn=1097-007X&rft_id=info:doi/10.1002/cta.3722&rft_dat=%3Cproquest_cross%3E2898287387%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898287387&rft_id=info:pmid/&rfr_iscdi=true |