Active disturbance rejection controller design for harmonic suppression in MPC optimal control based on harmonic state space modeling

Summary This paper proposes a harmonic suppression strategy for photovoltaic‐voltage source converters (PV‐VSC). The proposed method utilizes a harmonic state space (HSS) model‐combine model predictive control (MPC) algorithm, which provides a comprehensive representation of the global characteristi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of circuit theory and applications 2023-12, Vol.51 (12), p.5650-5671
Hauptverfasser: Lin, Jican, Liu, Shenquan, Wang, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5671
container_issue 12
container_start_page 5650
container_title International journal of circuit theory and applications
container_volume 51
creator Lin, Jican
Liu, Shenquan
Wang, Gang
description Summary This paper proposes a harmonic suppression strategy for photovoltaic‐voltage source converters (PV‐VSC). The proposed method utilizes a harmonic state space (HSS) model‐combine model predictive control (MPC) algorithm, which provides a comprehensive representation of the global characteristics of AC/DC harmonic coupling impedance in photovoltaic systems. The HSS‐based converter model operates as a linear time‐varying periodic system, which allows for the implementation of MPC to optimize the HSS equation. This optimization yields voltage increments across various harmonic orders, providing feedforward compensation for the current controller. By incorporating feedback signals into the current control, harmonic compensation is achieved, resulting in improved power quality. Furthermore, a decoupled proportional resonance‐linear adaptive disturbance rejection control (PR‐LADRC) is employed to effectively mitigate steady‐state errors and decrease total harmonic distortion in the presence of DC‐side disturbances. This is accomplished by decoupling the disturbance observer from the controller and integrating the increment feedback signal derived from the MPC‐HSS. Finally, the efficacy of the proposed method and the analysis results are corroborated through numerical simulations. This study developed a harmonic suppression strategy for PV‐VSC using HSS‐based MPC and PR‐LADRC to enhance power quality and mitigate distortion in photovoltaic systems.
doi_str_mv 10.1002/cta.3722
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2898287387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2898287387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2932-2912595c028f3213d67521cf8256f8d180b86cc1fb3305c60311b16859c2028d3</originalsourceid><addsrcrecordid>eNp1kM9KxDAQxoMouK6CjxDw4qXrJKFtclyK_2BFDyt4C2marlm6TU1SZR_A9zbrKp6EgYGZ3zcf8yF0TmBGAOiVjmrGSkoP0ISAKDOA8uUQTQAEzwTnxTE6CWENAJwyMUGfcx3tu8GNDXH0teq1wd6sTZq6HmvXR--6znjcmGBXPW6dx6_Kb1xvNQ7jMHgTwg61PX54qrAbot2o7leJaxVMg9P-TxRVNDgMKjltXGM6269O0VGrumDOfvoUPd9cL6u7bPF4e1_NF5mmgtGMCkJzkWugvGWUsKYoc0p0y2letLwhHGpeaE3amjHIdQGMkJoUPBeaJk3Dpuhif3fw7m00Icq1G32fLCXlglNeslRTdLmntHcheNPKwaen_FYSkLuQZQpZ7kJOaLZHP2xntv9yslrOv_kvePV-mQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898287387</pqid></control><display><type>article</type><title>Active disturbance rejection controller design for harmonic suppression in MPC optimal control based on harmonic state space modeling</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Lin, Jican ; Liu, Shenquan ; Wang, Gang</creator><creatorcontrib>Lin, Jican ; Liu, Shenquan ; Wang, Gang</creatorcontrib><description>Summary This paper proposes a harmonic suppression strategy for photovoltaic‐voltage source converters (PV‐VSC). The proposed method utilizes a harmonic state space (HSS) model‐combine model predictive control (MPC) algorithm, which provides a comprehensive representation of the global characteristics of AC/DC harmonic coupling impedance in photovoltaic systems. The HSS‐based converter model operates as a linear time‐varying periodic system, which allows for the implementation of MPC to optimize the HSS equation. This optimization yields voltage increments across various harmonic orders, providing feedforward compensation for the current controller. By incorporating feedback signals into the current control, harmonic compensation is achieved, resulting in improved power quality. Furthermore, a decoupled proportional resonance‐linear adaptive disturbance rejection control (PR‐LADRC) is employed to effectively mitigate steady‐state errors and decrease total harmonic distortion in the presence of DC‐side disturbances. This is accomplished by decoupling the disturbance observer from the controller and integrating the increment feedback signal derived from the MPC‐HSS. Finally, the efficacy of the proposed method and the analysis results are corroborated through numerical simulations. This study developed a harmonic suppression strategy for PV‐VSC using HSS‐based MPC and PR‐LADRC to enhance power quality and mitigate distortion in photovoltaic systems.</description><identifier>ISSN: 0098-9886</identifier><identifier>EISSN: 1097-007X</identifier><identifier>DOI: 10.1002/cta.3722</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Adaptive control ; Algorithms ; Compensation ; Control systems design ; Controllers ; Decoupling ; Disturbance observers ; Electric potential ; Feedback ; Feedforward control ; Harmonic control ; Harmonic distortion ; harmonic state space ; model predictive control ; Optimal control ; Optimization ; Photovoltaic cells ; photovoltaic‐voltage source converters ; Predictive control ; proportional resonance‐linear adaptive disturbance rejection control ; Rejection ; State space models ; Voltage</subject><ispartof>International journal of circuit theory and applications, 2023-12, Vol.51 (12), p.5650-5671</ispartof><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2932-2912595c028f3213d67521cf8256f8d180b86cc1fb3305c60311b16859c2028d3</citedby><cites>FETCH-LOGICAL-c2932-2912595c028f3213d67521cf8256f8d180b86cc1fb3305c60311b16859c2028d3</cites><orcidid>0000-0001-6769-1529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcta.3722$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcta.3722$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lin, Jican</creatorcontrib><creatorcontrib>Liu, Shenquan</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><title>Active disturbance rejection controller design for harmonic suppression in MPC optimal control based on harmonic state space modeling</title><title>International journal of circuit theory and applications</title><description>Summary This paper proposes a harmonic suppression strategy for photovoltaic‐voltage source converters (PV‐VSC). The proposed method utilizes a harmonic state space (HSS) model‐combine model predictive control (MPC) algorithm, which provides a comprehensive representation of the global characteristics of AC/DC harmonic coupling impedance in photovoltaic systems. The HSS‐based converter model operates as a linear time‐varying periodic system, which allows for the implementation of MPC to optimize the HSS equation. This optimization yields voltage increments across various harmonic orders, providing feedforward compensation for the current controller. By incorporating feedback signals into the current control, harmonic compensation is achieved, resulting in improved power quality. Furthermore, a decoupled proportional resonance‐linear adaptive disturbance rejection control (PR‐LADRC) is employed to effectively mitigate steady‐state errors and decrease total harmonic distortion in the presence of DC‐side disturbances. This is accomplished by decoupling the disturbance observer from the controller and integrating the increment feedback signal derived from the MPC‐HSS. Finally, the efficacy of the proposed method and the analysis results are corroborated through numerical simulations. This study developed a harmonic suppression strategy for PV‐VSC using HSS‐based MPC and PR‐LADRC to enhance power quality and mitigate distortion in photovoltaic systems.</description><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Compensation</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Decoupling</subject><subject>Disturbance observers</subject><subject>Electric potential</subject><subject>Feedback</subject><subject>Feedforward control</subject><subject>Harmonic control</subject><subject>Harmonic distortion</subject><subject>harmonic state space</subject><subject>model predictive control</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Photovoltaic cells</subject><subject>photovoltaic‐voltage source converters</subject><subject>Predictive control</subject><subject>proportional resonance‐linear adaptive disturbance rejection control</subject><subject>Rejection</subject><subject>State space models</subject><subject>Voltage</subject><issn>0098-9886</issn><issn>1097-007X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KxDAQxoMouK6CjxDw4qXrJKFtclyK_2BFDyt4C2marlm6TU1SZR_A9zbrKp6EgYGZ3zcf8yF0TmBGAOiVjmrGSkoP0ISAKDOA8uUQTQAEzwTnxTE6CWENAJwyMUGfcx3tu8GNDXH0teq1wd6sTZq6HmvXR--6znjcmGBXPW6dx6_Kb1xvNQ7jMHgTwg61PX54qrAbot2o7leJaxVMg9P-TxRVNDgMKjltXGM6269O0VGrumDOfvoUPd9cL6u7bPF4e1_NF5mmgtGMCkJzkWugvGWUsKYoc0p0y2letLwhHGpeaE3amjHIdQGMkJoUPBeaJk3Dpuhif3fw7m00Icq1G32fLCXlglNeslRTdLmntHcheNPKwaen_FYSkLuQZQpZ7kJOaLZHP2xntv9yslrOv_kvePV-mQ</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Lin, Jican</creator><creator>Liu, Shenquan</creator><creator>Wang, Gang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6769-1529</orcidid></search><sort><creationdate>202312</creationdate><title>Active disturbance rejection controller design for harmonic suppression in MPC optimal control based on harmonic state space modeling</title><author>Lin, Jican ; Liu, Shenquan ; Wang, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2932-2912595c028f3213d67521cf8256f8d180b86cc1fb3305c60311b16859c2028d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Compensation</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Decoupling</topic><topic>Disturbance observers</topic><topic>Electric potential</topic><topic>Feedback</topic><topic>Feedforward control</topic><topic>Harmonic control</topic><topic>Harmonic distortion</topic><topic>harmonic state space</topic><topic>model predictive control</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Photovoltaic cells</topic><topic>photovoltaic‐voltage source converters</topic><topic>Predictive control</topic><topic>proportional resonance‐linear adaptive disturbance rejection control</topic><topic>Rejection</topic><topic>State space models</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Jican</creatorcontrib><creatorcontrib>Liu, Shenquan</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of circuit theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Jican</au><au>Liu, Shenquan</au><au>Wang, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active disturbance rejection controller design for harmonic suppression in MPC optimal control based on harmonic state space modeling</atitle><jtitle>International journal of circuit theory and applications</jtitle><date>2023-12</date><risdate>2023</risdate><volume>51</volume><issue>12</issue><spage>5650</spage><epage>5671</epage><pages>5650-5671</pages><issn>0098-9886</issn><eissn>1097-007X</eissn><abstract>Summary This paper proposes a harmonic suppression strategy for photovoltaic‐voltage source converters (PV‐VSC). The proposed method utilizes a harmonic state space (HSS) model‐combine model predictive control (MPC) algorithm, which provides a comprehensive representation of the global characteristics of AC/DC harmonic coupling impedance in photovoltaic systems. The HSS‐based converter model operates as a linear time‐varying periodic system, which allows for the implementation of MPC to optimize the HSS equation. This optimization yields voltage increments across various harmonic orders, providing feedforward compensation for the current controller. By incorporating feedback signals into the current control, harmonic compensation is achieved, resulting in improved power quality. Furthermore, a decoupled proportional resonance‐linear adaptive disturbance rejection control (PR‐LADRC) is employed to effectively mitigate steady‐state errors and decrease total harmonic distortion in the presence of DC‐side disturbances. This is accomplished by decoupling the disturbance observer from the controller and integrating the increment feedback signal derived from the MPC‐HSS. Finally, the efficacy of the proposed method and the analysis results are corroborated through numerical simulations. This study developed a harmonic suppression strategy for PV‐VSC using HSS‐based MPC and PR‐LADRC to enhance power quality and mitigate distortion in photovoltaic systems.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cta.3722</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-6769-1529</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0098-9886
ispartof International journal of circuit theory and applications, 2023-12, Vol.51 (12), p.5650-5671
issn 0098-9886
1097-007X
language eng
recordid cdi_proquest_journals_2898287387
source Wiley Online Library - AutoHoldings Journals
subjects Adaptive control
Algorithms
Compensation
Control systems design
Controllers
Decoupling
Disturbance observers
Electric potential
Feedback
Feedforward control
Harmonic control
Harmonic distortion
harmonic state space
model predictive control
Optimal control
Optimization
Photovoltaic cells
photovoltaic‐voltage source converters
Predictive control
proportional resonance‐linear adaptive disturbance rejection control
Rejection
State space models
Voltage
title Active disturbance rejection controller design for harmonic suppression in MPC optimal control based on harmonic state space modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20disturbance%20rejection%20controller%20design%20for%20harmonic%20suppression%20in%20MPC%20optimal%20control%20based%20on%20harmonic%20state%20space%20modeling&rft.jtitle=International%20journal%20of%20circuit%20theory%20and%20applications&rft.au=Lin,%20Jican&rft.date=2023-12&rft.volume=51&rft.issue=12&rft.spage=5650&rft.epage=5671&rft.pages=5650-5671&rft.issn=0098-9886&rft.eissn=1097-007X&rft_id=info:doi/10.1002/cta.3722&rft_dat=%3Cproquest_cross%3E2898287387%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898287387&rft_id=info:pmid/&rfr_iscdi=true