Composition-Driven Structural, Optical, Thermal and Electrochemical Properties of Hybrid Perovskite-Structured Methylammonium-Tin-Chloride

Compositional techniques are recognised as an efficient way to produce efficient and stable organic-inorganic halide perovskites (OIHPs). Several studies on OIHPs have criticized the instability and toxicity of lead, which have been largely overlooked due to the lack of large-scale commercial implem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2024, Vol.53 (1), p.94-105
Hauptverfasser: Gopinathan, N., Basha, S. Sathik, Vasimalai, N., Mundari, Noor Aman Ahrar, Shajahan, A., Parveen, J. Shahitha, Enayathali, S. Syed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105
container_issue 1
container_start_page 94
container_title Journal of electronic materials
container_volume 53
creator Gopinathan, N.
Basha, S. Sathik
Vasimalai, N.
Mundari, Noor Aman Ahrar
Shajahan, A.
Parveen, J. Shahitha
Enayathali, S. Syed
description Compositional techniques are recognised as an efficient way to produce efficient and stable organic-inorganic halide perovskites (OIHPs). Several studies on OIHPs have criticized the instability and toxicity of lead, which have been largely overlooked due to the lack of large-scale commercial implementation. Tin-based OIHPs have been employed with three different perovskite systems to solve this problem. In this work, we report the synthesis and structural, optical, electrochemical and thermal properties of three different lead-free methylammonium tin chlorides, namely CH 3 NH 3 SnCl 3, CH 3 NH 3 Sn 2 Cl 5 and (CH 3 NH 3 ) 4 SnCl 6 . The synthesised perovskites were characterised by x-ray diffraction (XRD) patterns, field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS), photoluminescence (PL), thermogravimetric analysis (TGA) and cyclic voltammetry (CV) measurements. The analysis confirms that they have cubic, tetragonal and trigonal crystal structures. FE-SEM images showed agglomeration shapes. The DRS UV–Vis studies revealed that all the synthesised perovskites exhibit semiconducting behavior. PL analysis confirmed the emission centre in the green part of the spectrum. The thermal kinetics, including activation energy, Arrhenius constant, entropy, enthalpy and Gibbs energy, were calculated using the first weight loss of the TGA spectrum. CV analysis was used to determine the maximum specific capacitance of the supercapacitors, and revealed that the CH 3 NH 3 Sn 2 Cl 5 perovskite exhibited better performance than CH 3 NH 3 SnCl 3 and (CH 3 NH 3 ) 4 SnCl 6 perovskites. Graphical Abstract
doi_str_mv 10.1007/s11664-023-10777-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2898163884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2898163884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-4ff599028f3e40dedb532799a5b356815d9b732c332fc928b079922970198db73</originalsourceid><addsrcrecordid>eNp9kMtqGzEUhkVpoK7TF-hK0G2U6DKakZbBdeKAQwxxIDsxlzO13JnRVNIE_Ap56shxQ3ddnXP4Lwc-hL4zeskoLa4CY3meEcoFYbQoCkI_oRmTWTpV_vwZzajIGZFcyC_oawh7Splkis3Q68L1ows2WjeQn96-wIAfo5_qOPmyu8APY7T1cdnuwPdlh8uhwcsO6uhdvYP-KOKNdyP4aCFg1-LVofK2wRvw7iX8thHIRyE0-B7i7tCVfe8GO_Vkawey2HUuBeAcnbVlF-Db3zlHTzfL7WJF1g-3d4vrNal5QSPJ2lZqTblqBWS0gaaSghdal7ISMldMNroqBK-F4G2tuapoEjnXBWVaNUmaox-n3tG7PxOEaPZu8kN6abjSiuVCqSy5-MlVexeCh9aM3valPxhGzZG5OTE3ibl5Z25oColTKCTz8Av8v-r_pN4AwhCGlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898163884</pqid></control><display><type>article</type><title>Composition-Driven Structural, Optical, Thermal and Electrochemical Properties of Hybrid Perovskite-Structured Methylammonium-Tin-Chloride</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gopinathan, N. ; Basha, S. Sathik ; Vasimalai, N. ; Mundari, Noor Aman Ahrar ; Shajahan, A. ; Parveen, J. Shahitha ; Enayathali, S. Syed</creator><creatorcontrib>Gopinathan, N. ; Basha, S. Sathik ; Vasimalai, N. ; Mundari, Noor Aman Ahrar ; Shajahan, A. ; Parveen, J. Shahitha ; Enayathali, S. Syed</creatorcontrib><description>Compositional techniques are recognised as an efficient way to produce efficient and stable organic-inorganic halide perovskites (OIHPs). Several studies on OIHPs have criticized the instability and toxicity of lead, which have been largely overlooked due to the lack of large-scale commercial implementation. Tin-based OIHPs have been employed with three different perovskite systems to solve this problem. In this work, we report the synthesis and structural, optical, electrochemical and thermal properties of three different lead-free methylammonium tin chlorides, namely CH 3 NH 3 SnCl 3, CH 3 NH 3 Sn 2 Cl 5 and (CH 3 NH 3 ) 4 SnCl 6 . The synthesised perovskites were characterised by x-ray diffraction (XRD) patterns, field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS), photoluminescence (PL), thermogravimetric analysis (TGA) and cyclic voltammetry (CV) measurements. The analysis confirms that they have cubic, tetragonal and trigonal crystal structures. FE-SEM images showed agglomeration shapes. The DRS UV–Vis studies revealed that all the synthesised perovskites exhibit semiconducting behavior. PL analysis confirmed the emission centre in the green part of the spectrum. The thermal kinetics, including activation energy, Arrhenius constant, entropy, enthalpy and Gibbs energy, were calculated using the first weight loss of the TGA spectrum. CV analysis was used to determine the maximum specific capacitance of the supercapacitors, and revealed that the CH 3 NH 3 Sn 2 Cl 5 perovskite exhibited better performance than CH 3 NH 3 SnCl 3 and (CH 3 NH 3 ) 4 SnCl 6 perovskites. Graphical Abstract</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-023-10777-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chlorides ; Diffraction patterns ; Diffuse reflectance spectroscopy ; Electrochemical analysis ; Electronics and Microelectronics ; Emission analysis ; Enthalpy ; Entropy of activation ; Field emission microscopy ; Fourier transforms ; Infrared spectroscopy ; Instrumentation ; Lead free ; Materials Science ; Optical and Electronic Materials ; Optical properties ; Original Research Article ; Perovskites ; Photoluminescence ; Scanning electron microscopy ; Solid State Physics ; Spectrum analysis ; Thermodynamic properties ; Thermogravimetric analysis ; Ultraviolet reflection ; Weight loss</subject><ispartof>Journal of electronic materials, 2024, Vol.53 (1), p.94-105</ispartof><rights>The Minerals, Metals &amp; Materials Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-4ff599028f3e40dedb532799a5b356815d9b732c332fc928b079922970198db73</cites><orcidid>0000-0002-0278-8992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-023-10777-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-023-10777-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gopinathan, N.</creatorcontrib><creatorcontrib>Basha, S. Sathik</creatorcontrib><creatorcontrib>Vasimalai, N.</creatorcontrib><creatorcontrib>Mundari, Noor Aman Ahrar</creatorcontrib><creatorcontrib>Shajahan, A.</creatorcontrib><creatorcontrib>Parveen, J. Shahitha</creatorcontrib><creatorcontrib>Enayathali, S. Syed</creatorcontrib><title>Composition-Driven Structural, Optical, Thermal and Electrochemical Properties of Hybrid Perovskite-Structured Methylammonium-Tin-Chloride</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>Compositional techniques are recognised as an efficient way to produce efficient and stable organic-inorganic halide perovskites (OIHPs). Several studies on OIHPs have criticized the instability and toxicity of lead, which have been largely overlooked due to the lack of large-scale commercial implementation. Tin-based OIHPs have been employed with three different perovskite systems to solve this problem. In this work, we report the synthesis and structural, optical, electrochemical and thermal properties of three different lead-free methylammonium tin chlorides, namely CH 3 NH 3 SnCl 3, CH 3 NH 3 Sn 2 Cl 5 and (CH 3 NH 3 ) 4 SnCl 6 . The synthesised perovskites were characterised by x-ray diffraction (XRD) patterns, field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS), photoluminescence (PL), thermogravimetric analysis (TGA) and cyclic voltammetry (CV) measurements. The analysis confirms that they have cubic, tetragonal and trigonal crystal structures. FE-SEM images showed agglomeration shapes. The DRS UV–Vis studies revealed that all the synthesised perovskites exhibit semiconducting behavior. PL analysis confirmed the emission centre in the green part of the spectrum. The thermal kinetics, including activation energy, Arrhenius constant, entropy, enthalpy and Gibbs energy, were calculated using the first weight loss of the TGA spectrum. CV analysis was used to determine the maximum specific capacitance of the supercapacitors, and revealed that the CH 3 NH 3 Sn 2 Cl 5 perovskite exhibited better performance than CH 3 NH 3 SnCl 3 and (CH 3 NH 3 ) 4 SnCl 6 perovskites. Graphical Abstract</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chlorides</subject><subject>Diffraction patterns</subject><subject>Diffuse reflectance spectroscopy</subject><subject>Electrochemical analysis</subject><subject>Electronics and Microelectronics</subject><subject>Emission analysis</subject><subject>Enthalpy</subject><subject>Entropy of activation</subject><subject>Field emission microscopy</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Instrumentation</subject><subject>Lead free</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Original Research Article</subject><subject>Perovskites</subject><subject>Photoluminescence</subject><subject>Scanning electron microscopy</subject><subject>Solid State Physics</subject><subject>Spectrum analysis</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><subject>Ultraviolet reflection</subject><subject>Weight loss</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMtqGzEUhkVpoK7TF-hK0G2U6DKakZbBdeKAQwxxIDsxlzO13JnRVNIE_Ap56shxQ3ddnXP4Lwc-hL4zeskoLa4CY3meEcoFYbQoCkI_oRmTWTpV_vwZzajIGZFcyC_oawh7Splkis3Q68L1ows2WjeQn96-wIAfo5_qOPmyu8APY7T1cdnuwPdlh8uhwcsO6uhdvYP-KOKNdyP4aCFg1-LVofK2wRvw7iX8thHIRyE0-B7i7tCVfe8GO_Vkawey2HUuBeAcnbVlF-Db3zlHTzfL7WJF1g-3d4vrNal5QSPJ2lZqTblqBWS0gaaSghdal7ISMldMNroqBK-F4G2tuapoEjnXBWVaNUmaox-n3tG7PxOEaPZu8kN6abjSiuVCqSy5-MlVexeCh9aM3valPxhGzZG5OTE3ibl5Z25oColTKCTz8Av8v-r_pN4AwhCGlA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Gopinathan, N.</creator><creator>Basha, S. Sathik</creator><creator>Vasimalai, N.</creator><creator>Mundari, Noor Aman Ahrar</creator><creator>Shajahan, A.</creator><creator>Parveen, J. Shahitha</creator><creator>Enayathali, S. Syed</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-0278-8992</orcidid></search><sort><creationdate>2024</creationdate><title>Composition-Driven Structural, Optical, Thermal and Electrochemical Properties of Hybrid Perovskite-Structured Methylammonium-Tin-Chloride</title><author>Gopinathan, N. ; Basha, S. Sathik ; Vasimalai, N. ; Mundari, Noor Aman Ahrar ; Shajahan, A. ; Parveen, J. Shahitha ; Enayathali, S. Syed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-4ff599028f3e40dedb532799a5b356815d9b732c332fc928b079922970198db73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chlorides</topic><topic>Diffraction patterns</topic><topic>Diffuse reflectance spectroscopy</topic><topic>Electrochemical analysis</topic><topic>Electronics and Microelectronics</topic><topic>Emission analysis</topic><topic>Enthalpy</topic><topic>Entropy of activation</topic><topic>Field emission microscopy</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Instrumentation</topic><topic>Lead free</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Original Research Article</topic><topic>Perovskites</topic><topic>Photoluminescence</topic><topic>Scanning electron microscopy</topic><topic>Solid State Physics</topic><topic>Spectrum analysis</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><topic>Ultraviolet reflection</topic><topic>Weight loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gopinathan, N.</creatorcontrib><creatorcontrib>Basha, S. Sathik</creatorcontrib><creatorcontrib>Vasimalai, N.</creatorcontrib><creatorcontrib>Mundari, Noor Aman Ahrar</creatorcontrib><creatorcontrib>Shajahan, A.</creatorcontrib><creatorcontrib>Parveen, J. Shahitha</creatorcontrib><creatorcontrib>Enayathali, S. Syed</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gopinathan, N.</au><au>Basha, S. Sathik</au><au>Vasimalai, N.</au><au>Mundari, Noor Aman Ahrar</au><au>Shajahan, A.</au><au>Parveen, J. Shahitha</au><au>Enayathali, S. Syed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composition-Driven Structural, Optical, Thermal and Electrochemical Properties of Hybrid Perovskite-Structured Methylammonium-Tin-Chloride</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2024</date><risdate>2024</risdate><volume>53</volume><issue>1</issue><spage>94</spage><epage>105</epage><pages>94-105</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Compositional techniques are recognised as an efficient way to produce efficient and stable organic-inorganic halide perovskites (OIHPs). Several studies on OIHPs have criticized the instability and toxicity of lead, which have been largely overlooked due to the lack of large-scale commercial implementation. Tin-based OIHPs have been employed with three different perovskite systems to solve this problem. In this work, we report the synthesis and structural, optical, electrochemical and thermal properties of three different lead-free methylammonium tin chlorides, namely CH 3 NH 3 SnCl 3, CH 3 NH 3 Sn 2 Cl 5 and (CH 3 NH 3 ) 4 SnCl 6 . The synthesised perovskites were characterised by x-ray diffraction (XRD) patterns, field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS), photoluminescence (PL), thermogravimetric analysis (TGA) and cyclic voltammetry (CV) measurements. The analysis confirms that they have cubic, tetragonal and trigonal crystal structures. FE-SEM images showed agglomeration shapes. The DRS UV–Vis studies revealed that all the synthesised perovskites exhibit semiconducting behavior. PL analysis confirmed the emission centre in the green part of the spectrum. The thermal kinetics, including activation energy, Arrhenius constant, entropy, enthalpy and Gibbs energy, were calculated using the first weight loss of the TGA spectrum. CV analysis was used to determine the maximum specific capacitance of the supercapacitors, and revealed that the CH 3 NH 3 Sn 2 Cl 5 perovskite exhibited better performance than CH 3 NH 3 SnCl 3 and (CH 3 NH 3 ) 4 SnCl 6 perovskites. Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-023-10777-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0278-8992</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2024, Vol.53 (1), p.94-105
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2898163884
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Chlorides
Diffraction patterns
Diffuse reflectance spectroscopy
Electrochemical analysis
Electronics and Microelectronics
Emission analysis
Enthalpy
Entropy of activation
Field emission microscopy
Fourier transforms
Infrared spectroscopy
Instrumentation
Lead free
Materials Science
Optical and Electronic Materials
Optical properties
Original Research Article
Perovskites
Photoluminescence
Scanning electron microscopy
Solid State Physics
Spectrum analysis
Thermodynamic properties
Thermogravimetric analysis
Ultraviolet reflection
Weight loss
title Composition-Driven Structural, Optical, Thermal and Electrochemical Properties of Hybrid Perovskite-Structured Methylammonium-Tin-Chloride
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composition-Driven%20Structural,%20Optical,%20Thermal%20and%20Electrochemical%20Properties%20of%20Hybrid%20Perovskite-Structured%20Methylammonium-Tin-Chloride&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Gopinathan,%20N.&rft.date=2024&rft.volume=53&rft.issue=1&rft.spage=94&rft.epage=105&rft.pages=94-105&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-023-10777-0&rft_dat=%3Cproquest_cross%3E2898163884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898163884&rft_id=info:pmid/&rfr_iscdi=true