Marginalized iterative ensemble smoothers for data assimilation

Data assimilation is an important tool in many geophysical applications. One of many key elements of data assimilation algorithms is the measurement error that determines the weighting of the data in the cost function to be minimized. Although the algorithms used for data assimilation treat the meas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational geosciences 2023-12, Vol.27 (6), p.975-986
Hauptverfasser: Stordal, Andreas S., Lorentzen, Rolf J., Fossum, Kristian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 986
container_issue 6
container_start_page 975
container_title Computational geosciences
container_volume 27
creator Stordal, Andreas S.
Lorentzen, Rolf J.
Fossum, Kristian
description Data assimilation is an important tool in many geophysical applications. One of many key elements of data assimilation algorithms is the measurement error that determines the weighting of the data in the cost function to be minimized. Although the algorithms used for data assimilation treat the measurement uncertainty as known, it is in many cases estimated or set based on some expert opinion. Here we treat the measurement uncertainty as a hyperparameter in a fully Bayesian hierarchical model and derive a new class of iterative ensemble methods for data assimilation where the measurement uncertainty is integrated out. The proposed algorithms are compared with the standard iterative ensemble smoother on a 2D synthetic reservoir model.
doi_str_mv 10.1007/s10596-023-10242-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2898158013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2898158013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-79a7d8e09a69586d7388193226515438decc7409f57ea6e930da42c16200cf293</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJ0nydRBa_YMWLnkNsp2uWtlmTrqC_3ugK3jzNDDzvy_AQcsrgnAHoi8xAWkWBC8qA15yyPTJjUpeztna_7DUHWhh9SI5yXgOA1YLNyOWDT6sw-j58YluFCZOfwjtWOGYcXnqs8hDj9IopV11MVesnX_mcwxD6AsbxmBx0vs948jvn5Pnm-mlxR5ePt_eLqyVthBIT1dbr1iBYr6w0qtXCGGYF50oyWQvTYtPoGmwnNXqFVkDra94wxQGajlsxJ2e73k2Kb1vMk1vHbSp_Z8eNNUwaYKJQfEc1KeacsHObFAafPhwD9y3K7US5Isr9iHKshMQulAs8rjD9Vf-T-gJlVGpH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898158013</pqid></control><display><type>article</type><title>Marginalized iterative ensemble smoothers for data assimilation</title><source>SpringerLink</source><creator>Stordal, Andreas S. ; Lorentzen, Rolf J. ; Fossum, Kristian</creator><creatorcontrib>Stordal, Andreas S. ; Lorentzen, Rolf J. ; Fossum, Kristian</creatorcontrib><description>Data assimilation is an important tool in many geophysical applications. One of many key elements of data assimilation algorithms is the measurement error that determines the weighting of the data in the cost function to be minimized. Although the algorithms used for data assimilation treat the measurement uncertainty as known, it is in many cases estimated or set based on some expert opinion. Here we treat the measurement uncertainty as a hyperparameter in a fully Bayesian hierarchical model and derive a new class of iterative ensemble methods for data assimilation where the measurement uncertainty is integrated out. The proposed algorithms are compared with the standard iterative ensemble smoother on a 2D synthetic reservoir model.</description><identifier>ISSN: 1420-0597</identifier><identifier>EISSN: 1573-1499</identifier><identifier>DOI: 10.1007/s10596-023-10242-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Bayesian analysis ; Cost function ; Data assimilation ; Data collection ; Earth and Environmental Science ; Earth Sciences ; Error analysis ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Inverse problems ; Iterative methods ; Mathematical Modeling and Industrial Mathematics ; New class ; Original Paper ; Parameter estimation ; Probability theory ; Random variables ; Soil Science &amp; Conservation ; Uncertainty</subject><ispartof>Computational geosciences, 2023-12, Vol.27 (6), p.975-986</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-79a7d8e09a69586d7388193226515438decc7409f57ea6e930da42c16200cf293</citedby><cites>FETCH-LOGICAL-c363t-79a7d8e09a69586d7388193226515438decc7409f57ea6e930da42c16200cf293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10596-023-10242-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10596-023-10242-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Stordal, Andreas S.</creatorcontrib><creatorcontrib>Lorentzen, Rolf J.</creatorcontrib><creatorcontrib>Fossum, Kristian</creatorcontrib><title>Marginalized iterative ensemble smoothers for data assimilation</title><title>Computational geosciences</title><addtitle>Comput Geosci</addtitle><description>Data assimilation is an important tool in many geophysical applications. One of many key elements of data assimilation algorithms is the measurement error that determines the weighting of the data in the cost function to be minimized. Although the algorithms used for data assimilation treat the measurement uncertainty as known, it is in many cases estimated or set based on some expert opinion. Here we treat the measurement uncertainty as a hyperparameter in a fully Bayesian hierarchical model and derive a new class of iterative ensemble methods for data assimilation where the measurement uncertainty is integrated out. The proposed algorithms are compared with the standard iterative ensemble smoother on a 2D synthetic reservoir model.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Cost function</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Error analysis</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Inverse problems</subject><subject>Iterative methods</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>New class</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Probability theory</subject><subject>Random variables</subject><subject>Soil Science &amp; Conservation</subject><subject>Uncertainty</subject><issn>1420-0597</issn><issn>1573-1499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJ0nydRBa_YMWLnkNsp2uWtlmTrqC_3ugK3jzNDDzvy_AQcsrgnAHoi8xAWkWBC8qA15yyPTJjUpeztna_7DUHWhh9SI5yXgOA1YLNyOWDT6sw-j58YluFCZOfwjtWOGYcXnqs8hDj9IopV11MVesnX_mcwxD6AsbxmBx0vs948jvn5Pnm-mlxR5ePt_eLqyVthBIT1dbr1iBYr6w0qtXCGGYF50oyWQvTYtPoGmwnNXqFVkDra94wxQGajlsxJ2e73k2Kb1vMk1vHbSp_Z8eNNUwaYKJQfEc1KeacsHObFAafPhwD9y3K7US5Isr9iHKshMQulAs8rjD9Vf-T-gJlVGpH</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Stordal, Andreas S.</creator><creator>Lorentzen, Rolf J.</creator><creator>Fossum, Kristian</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20231201</creationdate><title>Marginalized iterative ensemble smoothers for data assimilation</title><author>Stordal, Andreas S. ; Lorentzen, Rolf J. ; Fossum, Kristian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-79a7d8e09a69586d7388193226515438decc7409f57ea6e930da42c16200cf293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Cost function</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Error analysis</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Inverse problems</topic><topic>Iterative methods</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>New class</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Probability theory</topic><topic>Random variables</topic><topic>Soil Science &amp; Conservation</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stordal, Andreas S.</creatorcontrib><creatorcontrib>Lorentzen, Rolf J.</creatorcontrib><creatorcontrib>Fossum, Kristian</creatorcontrib><collection>Springer Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stordal, Andreas S.</au><au>Lorentzen, Rolf J.</au><au>Fossum, Kristian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marginalized iterative ensemble smoothers for data assimilation</atitle><jtitle>Computational geosciences</jtitle><stitle>Comput Geosci</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>27</volume><issue>6</issue><spage>975</spage><epage>986</epage><pages>975-986</pages><issn>1420-0597</issn><eissn>1573-1499</eissn><abstract>Data assimilation is an important tool in many geophysical applications. One of many key elements of data assimilation algorithms is the measurement error that determines the weighting of the data in the cost function to be minimized. Although the algorithms used for data assimilation treat the measurement uncertainty as known, it is in many cases estimated or set based on some expert opinion. Here we treat the measurement uncertainty as a hyperparameter in a fully Bayesian hierarchical model and derive a new class of iterative ensemble methods for data assimilation where the measurement uncertainty is integrated out. The proposed algorithms are compared with the standard iterative ensemble smoother on a 2D synthetic reservoir model.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10596-023-10242-1</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-0597
ispartof Computational geosciences, 2023-12, Vol.27 (6), p.975-986
issn 1420-0597
1573-1499
language eng
recordid cdi_proquest_journals_2898158013
source SpringerLink
subjects Algorithms
Bayesian analysis
Cost function
Data assimilation
Data collection
Earth and Environmental Science
Earth Sciences
Error analysis
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Inverse problems
Iterative methods
Mathematical Modeling and Industrial Mathematics
New class
Original Paper
Parameter estimation
Probability theory
Random variables
Soil Science & Conservation
Uncertainty
title Marginalized iterative ensemble smoothers for data assimilation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A46%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marginalized%20iterative%20ensemble%20smoothers%20for%20data%20assimilation&rft.jtitle=Computational%20geosciences&rft.au=Stordal,%20Andreas%20S.&rft.date=2023-12-01&rft.volume=27&rft.issue=6&rft.spage=975&rft.epage=986&rft.pages=975-986&rft.issn=1420-0597&rft.eissn=1573-1499&rft_id=info:doi/10.1007/s10596-023-10242-1&rft_dat=%3Cproquest_cross%3E2898158013%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898158013&rft_id=info:pmid/&rfr_iscdi=true