RobustCalib: Robust Lidar-Camera Extrinsic Calibration with Consistency Learning
Current traditional methods for LiDAR-camera extrinsics estimation depend on offline targets and human efforts, while learning-based approaches resort to iterative refinement for calibration results, posing constraints on their generalization and application in on-board systems. In this paper, we pr...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Xu, Shuang Zhou, Sifan Tian, Zhi Ma, Jizhou Nie, Qiong Chu, Xiangxiang |
description | Current traditional methods for LiDAR-camera extrinsics estimation depend on offline targets and human efforts, while learning-based approaches resort to iterative refinement for calibration results, posing constraints on their generalization and application in on-board systems. In this paper, we propose a novel approach to address the extrinsic calibration problem in a robust, automatic, and single-shot manner. Instead of directly optimizing extrinsics, we leverage the consistency learning between LiDAR and camera to implement implicit re-calibartion. Specially, we introduce an appearance-consistency loss and a geometric-consistency loss to minimizing the inconsitency between the attrbutes (e.g., intensity and depth) of projected LiDAR points and the predicted ones. This design not only enhances adaptability to various scenarios but also enables a simple and efficient formulation during inference. We conduct comprehensive experiments on different datasets, and the results demonstrate that our method achieves accurate and robust performance. To promote further research and development in this area, we will release our model and code. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2898148103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2898148103</sourcerecordid><originalsourceid>FETCH-proquest_journals_28981481033</originalsourceid><addsrcrecordid>eNqNikEKwjAUBYMgWLR3CLgupEmr0W2ouOhCxH35rVFTaqL5KertLeoBXA1v3oxIxIVIE5lxPiExYssY44slz3MRkd3e1T0GBZ2p1_Q7aGmO4BMFV-2BFs_gjUXT0E_kIRhn6cOEC1Vu8Bi0bV601OCtsecZGZ-gQx3_OCXzTXFQ2-Tm3b3XGKrW9d4OV8XlSqaZTJkQ_1VvaDM_IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898148103</pqid></control><display><type>article</type><title>RobustCalib: Robust Lidar-Camera Extrinsic Calibration with Consistency Learning</title><source>Free E- Journals</source><creator>Xu, Shuang ; Zhou, Sifan ; Tian, Zhi ; Ma, Jizhou ; Nie, Qiong ; Chu, Xiangxiang</creator><creatorcontrib>Xu, Shuang ; Zhou, Sifan ; Tian, Zhi ; Ma, Jizhou ; Nie, Qiong ; Chu, Xiangxiang</creatorcontrib><description>Current traditional methods for LiDAR-camera extrinsics estimation depend on offline targets and human efforts, while learning-based approaches resort to iterative refinement for calibration results, posing constraints on their generalization and application in on-board systems. In this paper, we propose a novel approach to address the extrinsic calibration problem in a robust, automatic, and single-shot manner. Instead of directly optimizing extrinsics, we leverage the consistency learning between LiDAR and camera to implement implicit re-calibartion. Specially, we introduce an appearance-consistency loss and a geometric-consistency loss to minimizing the inconsitency between the attrbutes (e.g., intensity and depth) of projected LiDAR points and the predicted ones. This design not only enhances adaptability to various scenarios but also enables a simple and efficient formulation during inference. We conduct comprehensive experiments on different datasets, and the results demonstrate that our method achieves accurate and robust performance. To promote further research and development in this area, we will release our model and code.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Calibration ; Cameras ; Consistency ; Iterative methods ; Learning ; Lidar ; Onboard equipment ; R&D ; Research & development ; Robustness</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Xu, Shuang</creatorcontrib><creatorcontrib>Zhou, Sifan</creatorcontrib><creatorcontrib>Tian, Zhi</creatorcontrib><creatorcontrib>Ma, Jizhou</creatorcontrib><creatorcontrib>Nie, Qiong</creatorcontrib><creatorcontrib>Chu, Xiangxiang</creatorcontrib><title>RobustCalib: Robust Lidar-Camera Extrinsic Calibration with Consistency Learning</title><title>arXiv.org</title><description>Current traditional methods for LiDAR-camera extrinsics estimation depend on offline targets and human efforts, while learning-based approaches resort to iterative refinement for calibration results, posing constraints on their generalization and application in on-board systems. In this paper, we propose a novel approach to address the extrinsic calibration problem in a robust, automatic, and single-shot manner. Instead of directly optimizing extrinsics, we leverage the consistency learning between LiDAR and camera to implement implicit re-calibartion. Specially, we introduce an appearance-consistency loss and a geometric-consistency loss to minimizing the inconsitency between the attrbutes (e.g., intensity and depth) of projected LiDAR points and the predicted ones. This design not only enhances adaptability to various scenarios but also enables a simple and efficient formulation during inference. We conduct comprehensive experiments on different datasets, and the results demonstrate that our method achieves accurate and robust performance. To promote further research and development in this area, we will release our model and code.</description><subject>Calibration</subject><subject>Cameras</subject><subject>Consistency</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>Lidar</subject><subject>Onboard equipment</subject><subject>R&D</subject><subject>Research & development</subject><subject>Robustness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNikEKwjAUBYMgWLR3CLgupEmr0W2ouOhCxH35rVFTaqL5KertLeoBXA1v3oxIxIVIE5lxPiExYssY44slz3MRkd3e1T0GBZ2p1_Q7aGmO4BMFV-2BFs_gjUXT0E_kIRhn6cOEC1Vu8Bi0bV601OCtsecZGZ-gQx3_OCXzTXFQ2-Tm3b3XGKrW9d4OV8XlSqaZTJkQ_1VvaDM_IQ</recordid><startdate>20231202</startdate><enddate>20231202</enddate><creator>Xu, Shuang</creator><creator>Zhou, Sifan</creator><creator>Tian, Zhi</creator><creator>Ma, Jizhou</creator><creator>Nie, Qiong</creator><creator>Chu, Xiangxiang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231202</creationdate><title>RobustCalib: Robust Lidar-Camera Extrinsic Calibration with Consistency Learning</title><author>Xu, Shuang ; Zhou, Sifan ; Tian, Zhi ; Ma, Jizhou ; Nie, Qiong ; Chu, Xiangxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28981481033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Calibration</topic><topic>Cameras</topic><topic>Consistency</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>Lidar</topic><topic>Onboard equipment</topic><topic>R&D</topic><topic>Research & development</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Shuang</creatorcontrib><creatorcontrib>Zhou, Sifan</creatorcontrib><creatorcontrib>Tian, Zhi</creatorcontrib><creatorcontrib>Ma, Jizhou</creatorcontrib><creatorcontrib>Nie, Qiong</creatorcontrib><creatorcontrib>Chu, Xiangxiang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Shuang</au><au>Zhou, Sifan</au><au>Tian, Zhi</au><au>Ma, Jizhou</au><au>Nie, Qiong</au><au>Chu, Xiangxiang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>RobustCalib: Robust Lidar-Camera Extrinsic Calibration with Consistency Learning</atitle><jtitle>arXiv.org</jtitle><date>2023-12-02</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Current traditional methods for LiDAR-camera extrinsics estimation depend on offline targets and human efforts, while learning-based approaches resort to iterative refinement for calibration results, posing constraints on their generalization and application in on-board systems. In this paper, we propose a novel approach to address the extrinsic calibration problem in a robust, automatic, and single-shot manner. Instead of directly optimizing extrinsics, we leverage the consistency learning between LiDAR and camera to implement implicit re-calibartion. Specially, we introduce an appearance-consistency loss and a geometric-consistency loss to minimizing the inconsitency between the attrbutes (e.g., intensity and depth) of projected LiDAR points and the predicted ones. This design not only enhances adaptability to various scenarios but also enables a simple and efficient formulation during inference. We conduct comprehensive experiments on different datasets, and the results demonstrate that our method achieves accurate and robust performance. To promote further research and development in this area, we will release our model and code.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2898148103 |
source | Free E- Journals |
subjects | Calibration Cameras Consistency Iterative methods Learning Lidar Onboard equipment R&D Research & development Robustness |
title | RobustCalib: Robust Lidar-Camera Extrinsic Calibration with Consistency Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=RobustCalib:%20Robust%20Lidar-Camera%20Extrinsic%20Calibration%20with%20Consistency%20Learning&rft.jtitle=arXiv.org&rft.au=Xu,%20Shuang&rft.date=2023-12-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2898148103%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898148103&rft_id=info:pmid/&rfr_iscdi=true |