PTFE nanocoating on Cu nanoparticles through dry processing to enhance electrochemical conversion of CO2 towards multi-carbon products

Polymer modified copper (Cu) catalysts have demonstrated an increased production of multi-carbon (C2+) products during the electrochemical CO2 reduction reaction (CO2RR). Herein, a solvent-free processing method has been developed to cover commercial Cu nanoparticles with a porous nanocoating of pol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-12, Vol.11 (47), p.26252-26264
Hauptverfasser: Pellessier, John, Gong, Xiangtao, Li, Boyang, Zhang, Jiaqi, Yang, Gang, Hambleton, Kirk, Podder, Chinmoy, Gao, Zhongjia, Zhou, Hongcai, Wang, Guofeng, Pan, Heng, Li, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26264
container_issue 47
container_start_page 26252
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 11
creator Pellessier, John
Gong, Xiangtao
Li, Boyang
Zhang, Jiaqi
Yang, Gang
Hambleton, Kirk
Podder, Chinmoy
Gao, Zhongjia
Zhou, Hongcai
Wang, Guofeng
Pan, Heng
Li, Ying
description Polymer modified copper (Cu) catalysts have demonstrated an increased production of multi-carbon (C2+) products during the electrochemical CO2 reduction reaction (CO2RR). Herein, a solvent-free processing method has been developed to cover commercial Cu nanoparticles with a porous nanocoating of polytetrafluoroethylene (PTFE) that greatly improved the production of C2+ products. The PTFE coating created a large interfacial surface area that facilitated the transport of CO2 to the solid–liquid–gas interface. The optimal catalyst achieved a faradaic efficiency of 78% for C2+ products and a notably large C2+ to C1 product ratio of ∼13 at current densities ranging from 400 to 500 mA cm−2. In comparison, catalysts prepared by a conventional solvent-based method only achieved a faradaic efficiency of 56% for C2+ products and a small C2+ to C1 product ratio of ∼2 in the same current density range. Density functional theory (DFT) calculations suggested that the physisorbed PTFE coating on Cu catalysts plays a more significant role than the most frequently studied chemisorbed PTFE. The physisorbed PTFE is predicted to increase the binding energy of CO intermediates on Cu and lower the activation energy for C–C coupling steps, leading to significantly higher C2+ product selectivity of the Cu catalysts.
doi_str_mv 10.1039/d3ta05787a
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2897444207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2897444207</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-f10387755c7a6f0b5126cd85d8afa7c9f9a716892ed01269527561c73564871c3</originalsourceid><addsrcrecordid>eNo9j81OwzAQhC0EElXphSewxDlgO3FsH1HUAlKlcijnams7TarUDrYD4gV4bsyP2Muu5hvNaBG6puSWklLdmTIB4UIKOEMzRjgpRKXq8_9byku0iPFI8khCaqVm6PN5u1piB85rD6l3B-wdbqYfZYSQej3YiFMX_HTosAkfeAxe2xi_rclj6zpw2mI7WJ0y6eyp1zBg7d2bDbHPab7FzYZl8zsEE_FpGlJfaAj7zHKYmXSKV-iihSHaxd-eo5fVcts8FuvNw1Nzvy5GKstUtPlPKQTnWkDdkj2nrNZGciOhBaFVq0DQWipmDclIcSZ4TbUoeV1JQXU5Rze_ubn4dbIx7Y5-Ci5X7phUoqoqRkT5BQE2ZOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2897444207</pqid></control><display><type>article</type><title>PTFE nanocoating on Cu nanoparticles through dry processing to enhance electrochemical conversion of CO2 towards multi-carbon products</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Pellessier, John ; Gong, Xiangtao ; Li, Boyang ; Zhang, Jiaqi ; Yang, Gang ; Hambleton, Kirk ; Podder, Chinmoy ; Gao, Zhongjia ; Zhou, Hongcai ; Wang, Guofeng ; Pan, Heng ; Li, Ying</creator><creatorcontrib>Pellessier, John ; Gong, Xiangtao ; Li, Boyang ; Zhang, Jiaqi ; Yang, Gang ; Hambleton, Kirk ; Podder, Chinmoy ; Gao, Zhongjia ; Zhou, Hongcai ; Wang, Guofeng ; Pan, Heng ; Li, Ying</creatorcontrib><description>Polymer modified copper (Cu) catalysts have demonstrated an increased production of multi-carbon (C2+) products during the electrochemical CO2 reduction reaction (CO2RR). Herein, a solvent-free processing method has been developed to cover commercial Cu nanoparticles with a porous nanocoating of polytetrafluoroethylene (PTFE) that greatly improved the production of C2+ products. The PTFE coating created a large interfacial surface area that facilitated the transport of CO2 to the solid–liquid–gas interface. The optimal catalyst achieved a faradaic efficiency of 78% for C2+ products and a notably large C2+ to C1 product ratio of ∼13 at current densities ranging from 400 to 500 mA cm−2. In comparison, catalysts prepared by a conventional solvent-based method only achieved a faradaic efficiency of 56% for C2+ products and a small C2+ to C1 product ratio of ∼2 in the same current density range. Density functional theory (DFT) calculations suggested that the physisorbed PTFE coating on Cu catalysts plays a more significant role than the most frequently studied chemisorbed PTFE. The physisorbed PTFE is predicted to increase the binding energy of CO intermediates on Cu and lower the activation energy for C–C coupling steps, leading to significantly higher C2+ product selectivity of the Cu catalysts.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta05787a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon dioxide ; Catalysts ; Chemical reduction ; Copper ; Copper converters ; Current density ; Density functional theory ; Electrochemistry ; Intermediates ; Nanoparticles ; Polymers ; Polytetrafluoroethylene ; Solvents</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-12, Vol.11 (47), p.26252-26264</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Pellessier, John</creatorcontrib><creatorcontrib>Gong, Xiangtao</creatorcontrib><creatorcontrib>Li, Boyang</creatorcontrib><creatorcontrib>Zhang, Jiaqi</creatorcontrib><creatorcontrib>Yang, Gang</creatorcontrib><creatorcontrib>Hambleton, Kirk</creatorcontrib><creatorcontrib>Podder, Chinmoy</creatorcontrib><creatorcontrib>Gao, Zhongjia</creatorcontrib><creatorcontrib>Zhou, Hongcai</creatorcontrib><creatorcontrib>Wang, Guofeng</creatorcontrib><creatorcontrib>Pan, Heng</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><title>PTFE nanocoating on Cu nanoparticles through dry processing to enhance electrochemical conversion of CO2 towards multi-carbon products</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Polymer modified copper (Cu) catalysts have demonstrated an increased production of multi-carbon (C2+) products during the electrochemical CO2 reduction reaction (CO2RR). Herein, a solvent-free processing method has been developed to cover commercial Cu nanoparticles with a porous nanocoating of polytetrafluoroethylene (PTFE) that greatly improved the production of C2+ products. The PTFE coating created a large interfacial surface area that facilitated the transport of CO2 to the solid–liquid–gas interface. The optimal catalyst achieved a faradaic efficiency of 78% for C2+ products and a notably large C2+ to C1 product ratio of ∼13 at current densities ranging from 400 to 500 mA cm−2. In comparison, catalysts prepared by a conventional solvent-based method only achieved a faradaic efficiency of 56% for C2+ products and a small C2+ to C1 product ratio of ∼2 in the same current density range. Density functional theory (DFT) calculations suggested that the physisorbed PTFE coating on Cu catalysts plays a more significant role than the most frequently studied chemisorbed PTFE. The physisorbed PTFE is predicted to increase the binding energy of CO intermediates on Cu and lower the activation energy for C–C coupling steps, leading to significantly higher C2+ product selectivity of the Cu catalysts.</description><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Copper</subject><subject>Copper converters</subject><subject>Current density</subject><subject>Density functional theory</subject><subject>Electrochemistry</subject><subject>Intermediates</subject><subject>Nanoparticles</subject><subject>Polymers</subject><subject>Polytetrafluoroethylene</subject><subject>Solvents</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9j81OwzAQhC0EElXphSewxDlgO3FsH1HUAlKlcijnams7TarUDrYD4gV4bsyP2Muu5hvNaBG6puSWklLdmTIB4UIKOEMzRjgpRKXq8_9byku0iPFI8khCaqVm6PN5u1piB85rD6l3B-wdbqYfZYSQej3YiFMX_HTosAkfeAxe2xi_rclj6zpw2mI7WJ0y6eyp1zBg7d2bDbHPab7FzYZl8zsEE_FpGlJfaAj7zHKYmXSKV-iihSHaxd-eo5fVcts8FuvNw1Nzvy5GKstUtPlPKQTnWkDdkj2nrNZGciOhBaFVq0DQWipmDclIcSZ4TbUoeV1JQXU5Rze_ubn4dbIx7Y5-Ci5X7phUoqoqRkT5BQE2ZOA</recordid><startdate>20231205</startdate><enddate>20231205</enddate><creator>Pellessier, John</creator><creator>Gong, Xiangtao</creator><creator>Li, Boyang</creator><creator>Zhang, Jiaqi</creator><creator>Yang, Gang</creator><creator>Hambleton, Kirk</creator><creator>Podder, Chinmoy</creator><creator>Gao, Zhongjia</creator><creator>Zhou, Hongcai</creator><creator>Wang, Guofeng</creator><creator>Pan, Heng</creator><creator>Li, Ying</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20231205</creationdate><title>PTFE nanocoating on Cu nanoparticles through dry processing to enhance electrochemical conversion of CO2 towards multi-carbon products</title><author>Pellessier, John ; Gong, Xiangtao ; Li, Boyang ; Zhang, Jiaqi ; Yang, Gang ; Hambleton, Kirk ; Podder, Chinmoy ; Gao, Zhongjia ; Zhou, Hongcai ; Wang, Guofeng ; Pan, Heng ; Li, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-f10387755c7a6f0b5126cd85d8afa7c9f9a716892ed01269527561c73564871c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Copper</topic><topic>Copper converters</topic><topic>Current density</topic><topic>Density functional theory</topic><topic>Electrochemistry</topic><topic>Intermediates</topic><topic>Nanoparticles</topic><topic>Polymers</topic><topic>Polytetrafluoroethylene</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pellessier, John</creatorcontrib><creatorcontrib>Gong, Xiangtao</creatorcontrib><creatorcontrib>Li, Boyang</creatorcontrib><creatorcontrib>Zhang, Jiaqi</creatorcontrib><creatorcontrib>Yang, Gang</creatorcontrib><creatorcontrib>Hambleton, Kirk</creatorcontrib><creatorcontrib>Podder, Chinmoy</creatorcontrib><creatorcontrib>Gao, Zhongjia</creatorcontrib><creatorcontrib>Zhou, Hongcai</creatorcontrib><creatorcontrib>Wang, Guofeng</creatorcontrib><creatorcontrib>Pan, Heng</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pellessier, John</au><au>Gong, Xiangtao</au><au>Li, Boyang</au><au>Zhang, Jiaqi</au><au>Yang, Gang</au><au>Hambleton, Kirk</au><au>Podder, Chinmoy</au><au>Gao, Zhongjia</au><au>Zhou, Hongcai</au><au>Wang, Guofeng</au><au>Pan, Heng</au><au>Li, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PTFE nanocoating on Cu nanoparticles through dry processing to enhance electrochemical conversion of CO2 towards multi-carbon products</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-12-05</date><risdate>2023</risdate><volume>11</volume><issue>47</issue><spage>26252</spage><epage>26264</epage><pages>26252-26264</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Polymer modified copper (Cu) catalysts have demonstrated an increased production of multi-carbon (C2+) products during the electrochemical CO2 reduction reaction (CO2RR). Herein, a solvent-free processing method has been developed to cover commercial Cu nanoparticles with a porous nanocoating of polytetrafluoroethylene (PTFE) that greatly improved the production of C2+ products. The PTFE coating created a large interfacial surface area that facilitated the transport of CO2 to the solid–liquid–gas interface. The optimal catalyst achieved a faradaic efficiency of 78% for C2+ products and a notably large C2+ to C1 product ratio of ∼13 at current densities ranging from 400 to 500 mA cm−2. In comparison, catalysts prepared by a conventional solvent-based method only achieved a faradaic efficiency of 56% for C2+ products and a small C2+ to C1 product ratio of ∼2 in the same current density range. Density functional theory (DFT) calculations suggested that the physisorbed PTFE coating on Cu catalysts plays a more significant role than the most frequently studied chemisorbed PTFE. The physisorbed PTFE is predicted to increase the binding energy of CO intermediates on Cu and lower the activation energy for C–C coupling steps, leading to significantly higher C2+ product selectivity of the Cu catalysts.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta05787a</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2023-12, Vol.11 (47), p.26252-26264
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2897444207
source Royal Society Of Chemistry Journals 2008-
subjects Carbon dioxide
Catalysts
Chemical reduction
Copper
Copper converters
Current density
Density functional theory
Electrochemistry
Intermediates
Nanoparticles
Polymers
Polytetrafluoroethylene
Solvents
title PTFE nanocoating on Cu nanoparticles through dry processing to enhance electrochemical conversion of CO2 towards multi-carbon products
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A33%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PTFE%20nanocoating%20on%20Cu%20nanoparticles%20through%20dry%20processing%20to%20enhance%20electrochemical%20conversion%20of%20CO2%20towards%20multi-carbon%20products&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Pellessier,%20John&rft.date=2023-12-05&rft.volume=11&rft.issue=47&rft.spage=26252&rft.epage=26264&rft.pages=26252-26264&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta05787a&rft_dat=%3Cproquest%3E2897444207%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2897444207&rft_id=info:pmid/&rfr_iscdi=true