Identification of Plasticity and Fracture Models for Automotive Extruded Aluminum Parts Using Finite Element Model Updating Algorithm

For extruded aluminum alloys, the identification of mechanical properties and the corresponding constitutive modeling are very challenging, due to the complex structured part geometry, microstructure variance, difficulty in performing standard testing, and discrepancy between material- and structura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOM (1989) 2023-12, Vol.75 (12), p.5479-5493
Hauptverfasser: Won, Jung Yun, Hong, Seojun, Nam, Byunggun, Jung, Jaebong, Kim, Youngwan, Lee, Myoung-Gyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5493
container_issue 12
container_start_page 5479
container_title JOM (1989)
container_volume 75
creator Won, Jung Yun
Hong, Seojun
Nam, Byunggun
Jung, Jaebong
Kim, Youngwan
Lee, Myoung-Gyu
description For extruded aluminum alloys, the identification of mechanical properties and the corresponding constitutive modeling are very challenging, due to the complex structured part geometry, microstructure variance, difficulty in performing standard testing, and discrepancy between material- and structural-scale deformation. With these challenges, in this study, the plasticity and ductile fracture models for an aluminum extrusion part having a complex cross-sectional shape are identified based on an inverse experimental–numerical approach. In particular, bending experiments in part-scale are employed as alternatives to standard mechanical tests. A single and double finite element model updating scheme are newly suggested and performed to predict plastic hardening behavior and ductile fracture criterion from measured load–displacement curves. To overcome the limited deformation history available at various stress states, a virtual (deformation) path generation method is proposed for calibrating the fracture model. The feasibility of the optimized constitutive models is evaluated through a number of trials with modifications in the optimization process, which are successfully validated through comparison with experiments on load–displacement curves and fracture initiations. Finally, it is confirmed that the proposed inverse identification approach can offer a computationally efficient method for constitutive modeling, with potential applications in various engineering fields.
doi_str_mv 10.1007/s11837-023-06164-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2897293683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2897293683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-554e024663c31d7dfe10bb7b3ef392ee111701c020c8fd788a69235986dbfd043</originalsourceid><addsrcrecordid>eNp9kE1LwzAYx4soOKdfwFPAczVvbdPjGJsOFHdw55A2ycxok5mk4nb3exut4M3T8zw8_xf4Zdk1grcIwuouIMRIlUNMcliikubHk2yCCkpyxAp0mnZIq5wyws6zixB2MJlojSbZ50oqG402rYjGWeA0WHciRNOaeADCSrD0oo2DV-DJSdUFoJ0HsyG63kXzrsDiI_pBKglm3dAbO_RgLXwMYBOM3YKlsSYmUaf6VDNGgM1eprL0nXVb50187S-zMy26oK5-5zTbLBcv84f88fl-NZ895i1BdcyLgiqIaVmSdMtKaoVg01QNUZrUWCmEUAVRCzFsmZYVY6KsMSlqVspGS0jJNLsZc_fevQ0qRL5zg7epkmNWV7gmJSNJhUdV610IXmm-96YX_sAR5N-4-YibJ9z8Bzc_JhMZTSGJ7Vb5v-h_XF9veIUp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2897293683</pqid></control><display><type>article</type><title>Identification of Plasticity and Fracture Models for Automotive Extruded Aluminum Parts Using Finite Element Model Updating Algorithm</title><source>SpringerNature Journals</source><creator>Won, Jung Yun ; Hong, Seojun ; Nam, Byunggun ; Jung, Jaebong ; Kim, Youngwan ; Lee, Myoung-Gyu</creator><creatorcontrib>Won, Jung Yun ; Hong, Seojun ; Nam, Byunggun ; Jung, Jaebong ; Kim, Youngwan ; Lee, Myoung-Gyu</creatorcontrib><description>For extruded aluminum alloys, the identification of mechanical properties and the corresponding constitutive modeling are very challenging, due to the complex structured part geometry, microstructure variance, difficulty in performing standard testing, and discrepancy between material- and structural-scale deformation. With these challenges, in this study, the plasticity and ductile fracture models for an aluminum extrusion part having a complex cross-sectional shape are identified based on an inverse experimental–numerical approach. In particular, bending experiments in part-scale are employed as alternatives to standard mechanical tests. A single and double finite element model updating scheme are newly suggested and performed to predict plastic hardening behavior and ductile fracture criterion from measured load–displacement curves. To overcome the limited deformation history available at various stress states, a virtual (deformation) path generation method is proposed for calibrating the fracture model. The feasibility of the optimized constitutive models is evaluated through a number of trials with modifications in the optimization process, which are successfully validated through comparison with experiments on load–displacement curves and fracture initiations. Finally, it is confirmed that the proposed inverse identification approach can offer a computationally efficient method for constitutive modeling, with potential applications in various engineering fields.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-023-06164-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Alloys ; Aluminum alloys ; Aluminum base alloys ; Automobile industry ; Chemistry/Food Science ; Constitutive models ; Deformation ; Ductile fracture ; Earth Sciences ; Engineering ; Environment ; Experiments ; Extrusion ; Finite element method ; Geometry ; Heat treating ; Identification ; Identification of Anisotropic Constitutive Models for Complex Loading Paths ; Load ; Mathematical models ; Mechanical properties ; Mechanical tests ; Mechanics ; Model updating ; Partial differential equations ; Physics ; Plastic properties ; Weight reduction</subject><ispartof>JOM (1989), 2023-12, Vol.75 (12), p.5479-5493</ispartof><rights>The Minerals, Metals &amp; Materials Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Dec 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-554e024663c31d7dfe10bb7b3ef392ee111701c020c8fd788a69235986dbfd043</citedby><cites>FETCH-LOGICAL-c319t-554e024663c31d7dfe10bb7b3ef392ee111701c020c8fd788a69235986dbfd043</cites><orcidid>0000-0002-4549-218X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-023-06164-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-023-06164-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Won, Jung Yun</creatorcontrib><creatorcontrib>Hong, Seojun</creatorcontrib><creatorcontrib>Nam, Byunggun</creatorcontrib><creatorcontrib>Jung, Jaebong</creatorcontrib><creatorcontrib>Kim, Youngwan</creatorcontrib><creatorcontrib>Lee, Myoung-Gyu</creatorcontrib><title>Identification of Plasticity and Fracture Models for Automotive Extruded Aluminum Parts Using Finite Element Model Updating Algorithm</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>For extruded aluminum alloys, the identification of mechanical properties and the corresponding constitutive modeling are very challenging, due to the complex structured part geometry, microstructure variance, difficulty in performing standard testing, and discrepancy between material- and structural-scale deformation. With these challenges, in this study, the plasticity and ductile fracture models for an aluminum extrusion part having a complex cross-sectional shape are identified based on an inverse experimental–numerical approach. In particular, bending experiments in part-scale are employed as alternatives to standard mechanical tests. A single and double finite element model updating scheme are newly suggested and performed to predict plastic hardening behavior and ductile fracture criterion from measured load–displacement curves. To overcome the limited deformation history available at various stress states, a virtual (deformation) path generation method is proposed for calibrating the fracture model. The feasibility of the optimized constitutive models is evaluated through a number of trials with modifications in the optimization process, which are successfully validated through comparison with experiments on load–displacement curves and fracture initiations. Finally, it is confirmed that the proposed inverse identification approach can offer a computationally efficient method for constitutive modeling, with potential applications in various engineering fields.</description><subject>Algorithms</subject><subject>Alloys</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Automobile industry</subject><subject>Chemistry/Food Science</subject><subject>Constitutive models</subject><subject>Deformation</subject><subject>Ductile fracture</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Environment</subject><subject>Experiments</subject><subject>Extrusion</subject><subject>Finite element method</subject><subject>Geometry</subject><subject>Heat treating</subject><subject>Identification</subject><subject>Identification of Anisotropic Constitutive Models for Complex Loading Paths</subject><subject>Load</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Mechanical tests</subject><subject>Mechanics</subject><subject>Model updating</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Plastic properties</subject><subject>Weight reduction</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LwzAYx4soOKdfwFPAczVvbdPjGJsOFHdw55A2ycxok5mk4nb3exut4M3T8zw8_xf4Zdk1grcIwuouIMRIlUNMcliikubHk2yCCkpyxAp0mnZIq5wyws6zixB2MJlojSbZ50oqG402rYjGWeA0WHciRNOaeADCSrD0oo2DV-DJSdUFoJ0HsyG63kXzrsDiI_pBKglm3dAbO_RgLXwMYBOM3YKlsSYmUaf6VDNGgM1eprL0nXVb50187S-zMy26oK5-5zTbLBcv84f88fl-NZ895i1BdcyLgiqIaVmSdMtKaoVg01QNUZrUWCmEUAVRCzFsmZYVY6KsMSlqVspGS0jJNLsZc_fevQ0qRL5zg7epkmNWV7gmJSNJhUdV610IXmm-96YX_sAR5N-4-YibJ9z8Bzc_JhMZTSGJ7Vb5v-h_XF9veIUp</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Won, Jung Yun</creator><creator>Hong, Seojun</creator><creator>Nam, Byunggun</creator><creator>Jung, Jaebong</creator><creator>Kim, Youngwan</creator><creator>Lee, Myoung-Gyu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-4549-218X</orcidid></search><sort><creationdate>20231201</creationdate><title>Identification of Plasticity and Fracture Models for Automotive Extruded Aluminum Parts Using Finite Element Model Updating Algorithm</title><author>Won, Jung Yun ; Hong, Seojun ; Nam, Byunggun ; Jung, Jaebong ; Kim, Youngwan ; Lee, Myoung-Gyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-554e024663c31d7dfe10bb7b3ef392ee111701c020c8fd788a69235986dbfd043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Alloys</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Automobile industry</topic><topic>Chemistry/Food Science</topic><topic>Constitutive models</topic><topic>Deformation</topic><topic>Ductile fracture</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Environment</topic><topic>Experiments</topic><topic>Extrusion</topic><topic>Finite element method</topic><topic>Geometry</topic><topic>Heat treating</topic><topic>Identification</topic><topic>Identification of Anisotropic Constitutive Models for Complex Loading Paths</topic><topic>Load</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Mechanical tests</topic><topic>Mechanics</topic><topic>Model updating</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Plastic properties</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Won, Jung Yun</creatorcontrib><creatorcontrib>Hong, Seojun</creatorcontrib><creatorcontrib>Nam, Byunggun</creatorcontrib><creatorcontrib>Jung, Jaebong</creatorcontrib><creatorcontrib>Kim, Youngwan</creatorcontrib><creatorcontrib>Lee, Myoung-Gyu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Won, Jung Yun</au><au>Hong, Seojun</au><au>Nam, Byunggun</au><au>Jung, Jaebong</au><au>Kim, Youngwan</au><au>Lee, Myoung-Gyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Plasticity and Fracture Models for Automotive Extruded Aluminum Parts Using Finite Element Model Updating Algorithm</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>75</volume><issue>12</issue><spage>5479</spage><epage>5493</epage><pages>5479-5493</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>For extruded aluminum alloys, the identification of mechanical properties and the corresponding constitutive modeling are very challenging, due to the complex structured part geometry, microstructure variance, difficulty in performing standard testing, and discrepancy between material- and structural-scale deformation. With these challenges, in this study, the plasticity and ductile fracture models for an aluminum extrusion part having a complex cross-sectional shape are identified based on an inverse experimental–numerical approach. In particular, bending experiments in part-scale are employed as alternatives to standard mechanical tests. A single and double finite element model updating scheme are newly suggested and performed to predict plastic hardening behavior and ductile fracture criterion from measured load–displacement curves. To overcome the limited deformation history available at various stress states, a virtual (deformation) path generation method is proposed for calibrating the fracture model. The feasibility of the optimized constitutive models is evaluated through a number of trials with modifications in the optimization process, which are successfully validated through comparison with experiments on load–displacement curves and fracture initiations. Finally, it is confirmed that the proposed inverse identification approach can offer a computationally efficient method for constitutive modeling, with potential applications in various engineering fields.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-023-06164-z</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4549-218X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1047-4838
ispartof JOM (1989), 2023-12, Vol.75 (12), p.5479-5493
issn 1047-4838
1543-1851
language eng
recordid cdi_proquest_journals_2897293683
source SpringerNature Journals
subjects Algorithms
Alloys
Aluminum alloys
Aluminum base alloys
Automobile industry
Chemistry/Food Science
Constitutive models
Deformation
Ductile fracture
Earth Sciences
Engineering
Environment
Experiments
Extrusion
Finite element method
Geometry
Heat treating
Identification
Identification of Anisotropic Constitutive Models for Complex Loading Paths
Load
Mathematical models
Mechanical properties
Mechanical tests
Mechanics
Model updating
Partial differential equations
Physics
Plastic properties
Weight reduction
title Identification of Plasticity and Fracture Models for Automotive Extruded Aluminum Parts Using Finite Element Model Updating Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A04%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Plasticity%20and%20Fracture%20Models%20for%20Automotive%20Extruded%20Aluminum%20Parts%20Using%20Finite%20Element%20Model%20Updating%20Algorithm&rft.jtitle=JOM%20(1989)&rft.au=Won,%20Jung%20Yun&rft.date=2023-12-01&rft.volume=75&rft.issue=12&rft.spage=5479&rft.epage=5493&rft.pages=5479-5493&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-023-06164-z&rft_dat=%3Cproquest_cross%3E2897293683%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2897293683&rft_id=info:pmid/&rfr_iscdi=true