Star colouring and locally constrained graph homomorphisms

Dvořák, Mohar and Šámal (J. Graph Theory, 2013) proved that for every 3-regular graph \(G\), the line graph of \(G\) is 4-star colourable if and only if \(G\) admits a locally bijective homomorphism to the cube \(Q_3\). We generalise this result as follows: for \(p\geq 2\), a \(K_{1,p+1}\)-free \(2p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-11
Hauptverfasser: Shalu, M A, Cyriac Antony
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Shalu, M A
Cyriac Antony
description Dvořák, Mohar and Šámal (J. Graph Theory, 2013) proved that for every 3-regular graph \(G\), the line graph of \(G\) is 4-star colourable if and only if \(G\) admits a locally bijective homomorphism to the cube \(Q_3\). We generalise this result as follows: for \(p\geq 2\), a \(K_{1,p+1}\)-free \(2p\)-regular graph \(G\) admits a \((p + 2)\)-star colouring if and only if \(G\) admits a locally bijective homomorphism to a fixed \(2p\)-regular graph named \(G_{2p}\). We also prove the following: (i) for \(p\geq 2\), a \(2p\)-regular graph \(G\) admits a \((p + 2)\)-star colouring if and only if \(G\) has an orientation \(\vec{G}\) that admits an out-neighbourhood bijective homomorphism to a fixed orientation \(\vec{G_{2p}}\) of \(G2p\); (ii) for every 3-regular graph \(G\), the line graph of \(G\) is 4-star colourable if and only if \(G\) is bipartite and distance-two 4-colourable; and (iii) it is NP-complete to check whether a planar 4-regular 3-connected graph is 4-star colourable.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2897286199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2897286199</sourcerecordid><originalsourceid>FETCH-proquest_journals_28972861993</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCi5JLFJIzs_JLy3KzEtXSMxLUcjJT07MyakEiuYVlxQlZualpiikFyUWZChk5OcCYVFBRmZxbjEPA2taYk5xKi-U5mZQdnMNcfbQLSjKLyxNLS6JzwIamgeUijeysDQ3sjAztLQ0Jk4VABvcN8k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2897286199</pqid></control><display><type>article</type><title>Star colouring and locally constrained graph homomorphisms</title><source>Free E- Journals</source><creator>Shalu, M A ; Cyriac Antony</creator><creatorcontrib>Shalu, M A ; Cyriac Antony</creatorcontrib><description>Dvořák, Mohar and Šámal (J. Graph Theory, 2013) proved that for every 3-regular graph \(G\), the line graph of \(G\) is 4-star colourable if and only if \(G\) admits a locally bijective homomorphism to the cube \(Q_3\). We generalise this result as follows: for \(p\geq 2\), a \(K_{1,p+1}\)-free \(2p\)-regular graph \(G\) admits a \((p + 2)\)-star colouring if and only if \(G\) admits a locally bijective homomorphism to a fixed \(2p\)-regular graph named \(G_{2p}\). We also prove the following: (i) for \(p\geq 2\), a \(2p\)-regular graph \(G\) admits a \((p + 2)\)-star colouring if and only if \(G\) has an orientation \(\vec{G}\) that admits an out-neighbourhood bijective homomorphism to a fixed orientation \(\vec{G_{2p}}\) of \(G2p\); (ii) for every 3-regular graph \(G\), the line graph of \(G\) is 4-star colourable if and only if \(G\) is bipartite and distance-two 4-colourable; and (iii) it is NP-complete to check whether a planar 4-regular 3-connected graph is 4-star colourable.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coloring ; Graph theory ; Homomorphisms</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Shalu, M A</creatorcontrib><creatorcontrib>Cyriac Antony</creatorcontrib><title>Star colouring and locally constrained graph homomorphisms</title><title>arXiv.org</title><description>Dvořák, Mohar and Šámal (J. Graph Theory, 2013) proved that for every 3-regular graph \(G\), the line graph of \(G\) is 4-star colourable if and only if \(G\) admits a locally bijective homomorphism to the cube \(Q_3\). We generalise this result as follows: for \(p\geq 2\), a \(K_{1,p+1}\)-free \(2p\)-regular graph \(G\) admits a \((p + 2)\)-star colouring if and only if \(G\) admits a locally bijective homomorphism to a fixed \(2p\)-regular graph named \(G_{2p}\). We also prove the following: (i) for \(p\geq 2\), a \(2p\)-regular graph \(G\) admits a \((p + 2)\)-star colouring if and only if \(G\) has an orientation \(\vec{G}\) that admits an out-neighbourhood bijective homomorphism to a fixed orientation \(\vec{G_{2p}}\) of \(G2p\); (ii) for every 3-regular graph \(G\), the line graph of \(G\) is 4-star colourable if and only if \(G\) is bipartite and distance-two 4-colourable; and (iii) it is NP-complete to check whether a planar 4-regular 3-connected graph is 4-star colourable.</description><subject>Coloring</subject><subject>Graph theory</subject><subject>Homomorphisms</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCi5JLFJIzs_JLy3KzEtXSMxLUcjJT07MyakEiuYVlxQlZualpiikFyUWZChk5OcCYVFBRmZxbjEPA2taYk5xKi-U5mZQdnMNcfbQLSjKLyxNLS6JzwIamgeUijeysDQ3sjAztLQ0Jk4VABvcN8k</recordid><startdate>20231130</startdate><enddate>20231130</enddate><creator>Shalu, M A</creator><creator>Cyriac Antony</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231130</creationdate><title>Star colouring and locally constrained graph homomorphisms</title><author>Shalu, M A ; Cyriac Antony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28972861993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coloring</topic><topic>Graph theory</topic><topic>Homomorphisms</topic><toplevel>online_resources</toplevel><creatorcontrib>Shalu, M A</creatorcontrib><creatorcontrib>Cyriac Antony</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shalu, M A</au><au>Cyriac Antony</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Star colouring and locally constrained graph homomorphisms</atitle><jtitle>arXiv.org</jtitle><date>2023-11-30</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Dvořák, Mohar and Šámal (J. Graph Theory, 2013) proved that for every 3-regular graph \(G\), the line graph of \(G\) is 4-star colourable if and only if \(G\) admits a locally bijective homomorphism to the cube \(Q_3\). We generalise this result as follows: for \(p\geq 2\), a \(K_{1,p+1}\)-free \(2p\)-regular graph \(G\) admits a \((p + 2)\)-star colouring if and only if \(G\) admits a locally bijective homomorphism to a fixed \(2p\)-regular graph named \(G_{2p}\). We also prove the following: (i) for \(p\geq 2\), a \(2p\)-regular graph \(G\) admits a \((p + 2)\)-star colouring if and only if \(G\) has an orientation \(\vec{G}\) that admits an out-neighbourhood bijective homomorphism to a fixed orientation \(\vec{G_{2p}}\) of \(G2p\); (ii) for every 3-regular graph \(G\), the line graph of \(G\) is 4-star colourable if and only if \(G\) is bipartite and distance-two 4-colourable; and (iii) it is NP-complete to check whether a planar 4-regular 3-connected graph is 4-star colourable.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2897286199
source Free E- Journals
subjects Coloring
Graph theory
Homomorphisms
title Star colouring and locally constrained graph homomorphisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Star%20colouring%20and%20locally%20constrained%20graph%20homomorphisms&rft.jtitle=arXiv.org&rft.au=Shalu,%20M%20A&rft.date=2023-11-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2897286199%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2897286199&rft_id=info:pmid/&rfr_iscdi=true