MaxMem: Colocation and Performance for Big Data Applications on Tiered Main Memory Servers

We present MaxMem, a tiered main memory management system that aims to maximize Big Data application colocation and performance. MaxMem uses an application-agnostic and lightweight memory occupancy control mechanism based on fast memory miss ratios to provide application QoS under increasing colocat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-12
Hauptverfasser: Raybuck, Amanda, Zhang, Wei, Mansoorshahi, Kayvan, Kamath, Aditya K, Erez, Mattan, Simon, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Raybuck, Amanda
Zhang, Wei
Mansoorshahi, Kayvan
Kamath, Aditya K
Erez, Mattan
Simon, Peter
description We present MaxMem, a tiered main memory management system that aims to maximize Big Data application colocation and performance. MaxMem uses an application-agnostic and lightweight memory occupancy control mechanism based on fast memory miss ratios to provide application QoS under increasing colocation. By relying on memory access sampling and binning to quickly identify per-process memory heat gradients, MaxMem maximizes performance for many applications sharing tiered main memory simultaneously. MaxMem is designed as a user-space memory manager to be easily modifiable and extensible, without complex kernel code development. On a system with tiered main memory consisting of DRAM and Intel Optane persistent memory modules, our evaluation confirms that MaxMem provides 11% and 38% better throughput and up to 80% and an order of magnitude lower 99th percentile latency than HeMem and Linux AutoNUMA, respectively, with a Big Data key-value store in dynamic colocation scenarios.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2897285745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2897285745</sourcerecordid><originalsourceid>FETCH-proquest_journals_28972857453</originalsourceid><addsrcrecordid>eNqNzNEKgjAYBeARBEn5Dj90Ldjm0rorK7oRgrzqRob-xkQ32zTq7RvUA3R1DpyPMyEeZWwVJBGlM-Jb24RhSNcx5Zx55JaJV4bdFlLd6lIMUisQqoILmlqbTqgSwRXYyzscxCBg1_et_EILDucSDVaQCanAHWnzhiuaJxq7INNatBb9X87J8nTM03PQG_0Y0Q5Fo0ej3FTQZBPThMcRZ_-pD6XrQdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2897285745</pqid></control><display><type>article</type><title>MaxMem: Colocation and Performance for Big Data Applications on Tiered Main Memory Servers</title><source>Free E- Journals</source><creator>Raybuck, Amanda ; Zhang, Wei ; Mansoorshahi, Kayvan ; Kamath, Aditya K ; Erez, Mattan ; Simon, Peter</creator><creatorcontrib>Raybuck, Amanda ; Zhang, Wei ; Mansoorshahi, Kayvan ; Kamath, Aditya K ; Erez, Mattan ; Simon, Peter</creatorcontrib><description>We present MaxMem, a tiered main memory management system that aims to maximize Big Data application colocation and performance. MaxMem uses an application-agnostic and lightweight memory occupancy control mechanism based on fast memory miss ratios to provide application QoS under increasing colocation. By relying on memory access sampling and binning to quickly identify per-process memory heat gradients, MaxMem maximizes performance for many applications sharing tiered main memory simultaneously. MaxMem is designed as a user-space memory manager to be easily modifiable and extensible, without complex kernel code development. On a system with tiered main memory consisting of DRAM and Intel Optane persistent memory modules, our evaluation confirms that MaxMem provides 11% and 38% better throughput and up to 80% and an order of magnitude lower 99th percentile latency than HeMem and Linux AutoNUMA, respectively, with a Big Data key-value store in dynamic colocation scenarios.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Big Data ; Data storage ; Dynamic random access memory ; Memory management</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Raybuck, Amanda</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Mansoorshahi, Kayvan</creatorcontrib><creatorcontrib>Kamath, Aditya K</creatorcontrib><creatorcontrib>Erez, Mattan</creatorcontrib><creatorcontrib>Simon, Peter</creatorcontrib><title>MaxMem: Colocation and Performance for Big Data Applications on Tiered Main Memory Servers</title><title>arXiv.org</title><description>We present MaxMem, a tiered main memory management system that aims to maximize Big Data application colocation and performance. MaxMem uses an application-agnostic and lightweight memory occupancy control mechanism based on fast memory miss ratios to provide application QoS under increasing colocation. By relying on memory access sampling and binning to quickly identify per-process memory heat gradients, MaxMem maximizes performance for many applications sharing tiered main memory simultaneously. MaxMem is designed as a user-space memory manager to be easily modifiable and extensible, without complex kernel code development. On a system with tiered main memory consisting of DRAM and Intel Optane persistent memory modules, our evaluation confirms that MaxMem provides 11% and 38% better throughput and up to 80% and an order of magnitude lower 99th percentile latency than HeMem and Linux AutoNUMA, respectively, with a Big Data key-value store in dynamic colocation scenarios.</description><subject>Big Data</subject><subject>Data storage</subject><subject>Dynamic random access memory</subject><subject>Memory management</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzNEKgjAYBeARBEn5Dj90Ldjm0rorK7oRgrzqRob-xkQ32zTq7RvUA3R1DpyPMyEeZWwVJBGlM-Jb24RhSNcx5Zx55JaJV4bdFlLd6lIMUisQqoILmlqbTqgSwRXYyzscxCBg1_et_EILDucSDVaQCanAHWnzhiuaJxq7INNatBb9X87J8nTM03PQG_0Y0Q5Fo0ej3FTQZBPThMcRZ_-pD6XrQdw</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Raybuck, Amanda</creator><creator>Zhang, Wei</creator><creator>Mansoorshahi, Kayvan</creator><creator>Kamath, Aditya K</creator><creator>Erez, Mattan</creator><creator>Simon, Peter</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231201</creationdate><title>MaxMem: Colocation and Performance for Big Data Applications on Tiered Main Memory Servers</title><author>Raybuck, Amanda ; Zhang, Wei ; Mansoorshahi, Kayvan ; Kamath, Aditya K ; Erez, Mattan ; Simon, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28972857453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Big Data</topic><topic>Data storage</topic><topic>Dynamic random access memory</topic><topic>Memory management</topic><toplevel>online_resources</toplevel><creatorcontrib>Raybuck, Amanda</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Mansoorshahi, Kayvan</creatorcontrib><creatorcontrib>Kamath, Aditya K</creatorcontrib><creatorcontrib>Erez, Mattan</creatorcontrib><creatorcontrib>Simon, Peter</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raybuck, Amanda</au><au>Zhang, Wei</au><au>Mansoorshahi, Kayvan</au><au>Kamath, Aditya K</au><au>Erez, Mattan</au><au>Simon, Peter</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>MaxMem: Colocation and Performance for Big Data Applications on Tiered Main Memory Servers</atitle><jtitle>arXiv.org</jtitle><date>2023-12-01</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We present MaxMem, a tiered main memory management system that aims to maximize Big Data application colocation and performance. MaxMem uses an application-agnostic and lightweight memory occupancy control mechanism based on fast memory miss ratios to provide application QoS under increasing colocation. By relying on memory access sampling and binning to quickly identify per-process memory heat gradients, MaxMem maximizes performance for many applications sharing tiered main memory simultaneously. MaxMem is designed as a user-space memory manager to be easily modifiable and extensible, without complex kernel code development. On a system with tiered main memory consisting of DRAM and Intel Optane persistent memory modules, our evaluation confirms that MaxMem provides 11% and 38% better throughput and up to 80% and an order of magnitude lower 99th percentile latency than HeMem and Linux AutoNUMA, respectively, with a Big Data key-value store in dynamic colocation scenarios.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2897285745
source Free E- Journals
subjects Big Data
Data storage
Dynamic random access memory
Memory management
title MaxMem: Colocation and Performance for Big Data Applications on Tiered Main Memory Servers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T23%3A40%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=MaxMem:%20Colocation%20and%20Performance%20for%20Big%20Data%20Applications%20on%20Tiered%20Main%20Memory%20Servers&rft.jtitle=arXiv.org&rft.au=Raybuck,%20Amanda&rft.date=2023-12-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2897285745%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2897285745&rft_id=info:pmid/&rfr_iscdi=true