MaxMem: Colocation and Performance for Big Data Applications on Tiered Main Memory Servers
We present MaxMem, a tiered main memory management system that aims to maximize Big Data application colocation and performance. MaxMem uses an application-agnostic and lightweight memory occupancy control mechanism based on fast memory miss ratios to provide application QoS under increasing colocat...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Raybuck, Amanda Zhang, Wei Mansoorshahi, Kayvan Kamath, Aditya K Erez, Mattan Simon, Peter |
description | We present MaxMem, a tiered main memory management system that aims to maximize Big Data application colocation and performance. MaxMem uses an application-agnostic and lightweight memory occupancy control mechanism based on fast memory miss ratios to provide application QoS under increasing colocation. By relying on memory access sampling and binning to quickly identify per-process memory heat gradients, MaxMem maximizes performance for many applications sharing tiered main memory simultaneously. MaxMem is designed as a user-space memory manager to be easily modifiable and extensible, without complex kernel code development. On a system with tiered main memory consisting of DRAM and Intel Optane persistent memory modules, our evaluation confirms that MaxMem provides 11% and 38% better throughput and up to 80% and an order of magnitude lower 99th percentile latency than HeMem and Linux AutoNUMA, respectively, with a Big Data key-value store in dynamic colocation scenarios. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2897285745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2897285745</sourcerecordid><originalsourceid>FETCH-proquest_journals_28972857453</originalsourceid><addsrcrecordid>eNqNzNEKgjAYBeARBEn5Dj90Ldjm0rorK7oRgrzqRob-xkQ32zTq7RvUA3R1DpyPMyEeZWwVJBGlM-Jb24RhSNcx5Zx55JaJV4bdFlLd6lIMUisQqoILmlqbTqgSwRXYyzscxCBg1_et_EILDucSDVaQCanAHWnzhiuaJxq7INNatBb9X87J8nTM03PQG_0Y0Q5Fo0ej3FTQZBPThMcRZ_-pD6XrQdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2897285745</pqid></control><display><type>article</type><title>MaxMem: Colocation and Performance for Big Data Applications on Tiered Main Memory Servers</title><source>Free E- Journals</source><creator>Raybuck, Amanda ; Zhang, Wei ; Mansoorshahi, Kayvan ; Kamath, Aditya K ; Erez, Mattan ; Simon, Peter</creator><creatorcontrib>Raybuck, Amanda ; Zhang, Wei ; Mansoorshahi, Kayvan ; Kamath, Aditya K ; Erez, Mattan ; Simon, Peter</creatorcontrib><description>We present MaxMem, a tiered main memory management system that aims to maximize Big Data application colocation and performance. MaxMem uses an application-agnostic and lightweight memory occupancy control mechanism based on fast memory miss ratios to provide application QoS under increasing colocation. By relying on memory access sampling and binning to quickly identify per-process memory heat gradients, MaxMem maximizes performance for many applications sharing tiered main memory simultaneously. MaxMem is designed as a user-space memory manager to be easily modifiable and extensible, without complex kernel code development. On a system with tiered main memory consisting of DRAM and Intel Optane persistent memory modules, our evaluation confirms that MaxMem provides 11% and 38% better throughput and up to 80% and an order of magnitude lower 99th percentile latency than HeMem and Linux AutoNUMA, respectively, with a Big Data key-value store in dynamic colocation scenarios.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Big Data ; Data storage ; Dynamic random access memory ; Memory management</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Raybuck, Amanda</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Mansoorshahi, Kayvan</creatorcontrib><creatorcontrib>Kamath, Aditya K</creatorcontrib><creatorcontrib>Erez, Mattan</creatorcontrib><creatorcontrib>Simon, Peter</creatorcontrib><title>MaxMem: Colocation and Performance for Big Data Applications on Tiered Main Memory Servers</title><title>arXiv.org</title><description>We present MaxMem, a tiered main memory management system that aims to maximize Big Data application colocation and performance. MaxMem uses an application-agnostic and lightweight memory occupancy control mechanism based on fast memory miss ratios to provide application QoS under increasing colocation. By relying on memory access sampling and binning to quickly identify per-process memory heat gradients, MaxMem maximizes performance for many applications sharing tiered main memory simultaneously. MaxMem is designed as a user-space memory manager to be easily modifiable and extensible, without complex kernel code development. On a system with tiered main memory consisting of DRAM and Intel Optane persistent memory modules, our evaluation confirms that MaxMem provides 11% and 38% better throughput and up to 80% and an order of magnitude lower 99th percentile latency than HeMem and Linux AutoNUMA, respectively, with a Big Data key-value store in dynamic colocation scenarios.</description><subject>Big Data</subject><subject>Data storage</subject><subject>Dynamic random access memory</subject><subject>Memory management</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzNEKgjAYBeARBEn5Dj90Ldjm0rorK7oRgrzqRob-xkQ32zTq7RvUA3R1DpyPMyEeZWwVJBGlM-Jb24RhSNcx5Zx55JaJV4bdFlLd6lIMUisQqoILmlqbTqgSwRXYyzscxCBg1_et_EILDucSDVaQCanAHWnzhiuaJxq7INNatBb9X87J8nTM03PQG_0Y0Q5Fo0ej3FTQZBPThMcRZ_-pD6XrQdw</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Raybuck, Amanda</creator><creator>Zhang, Wei</creator><creator>Mansoorshahi, Kayvan</creator><creator>Kamath, Aditya K</creator><creator>Erez, Mattan</creator><creator>Simon, Peter</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231201</creationdate><title>MaxMem: Colocation and Performance for Big Data Applications on Tiered Main Memory Servers</title><author>Raybuck, Amanda ; Zhang, Wei ; Mansoorshahi, Kayvan ; Kamath, Aditya K ; Erez, Mattan ; Simon, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28972857453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Big Data</topic><topic>Data storage</topic><topic>Dynamic random access memory</topic><topic>Memory management</topic><toplevel>online_resources</toplevel><creatorcontrib>Raybuck, Amanda</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Mansoorshahi, Kayvan</creatorcontrib><creatorcontrib>Kamath, Aditya K</creatorcontrib><creatorcontrib>Erez, Mattan</creatorcontrib><creatorcontrib>Simon, Peter</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raybuck, Amanda</au><au>Zhang, Wei</au><au>Mansoorshahi, Kayvan</au><au>Kamath, Aditya K</au><au>Erez, Mattan</au><au>Simon, Peter</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>MaxMem: Colocation and Performance for Big Data Applications on Tiered Main Memory Servers</atitle><jtitle>arXiv.org</jtitle><date>2023-12-01</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We present MaxMem, a tiered main memory management system that aims to maximize Big Data application colocation and performance. MaxMem uses an application-agnostic and lightweight memory occupancy control mechanism based on fast memory miss ratios to provide application QoS under increasing colocation. By relying on memory access sampling and binning to quickly identify per-process memory heat gradients, MaxMem maximizes performance for many applications sharing tiered main memory simultaneously. MaxMem is designed as a user-space memory manager to be easily modifiable and extensible, without complex kernel code development. On a system with tiered main memory consisting of DRAM and Intel Optane persistent memory modules, our evaluation confirms that MaxMem provides 11% and 38% better throughput and up to 80% and an order of magnitude lower 99th percentile latency than HeMem and Linux AutoNUMA, respectively, with a Big Data key-value store in dynamic colocation scenarios.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2897285745 |
source | Free E- Journals |
subjects | Big Data Data storage Dynamic random access memory Memory management |
title | MaxMem: Colocation and Performance for Big Data Applications on Tiered Main Memory Servers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T23%3A40%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=MaxMem:%20Colocation%20and%20Performance%20for%20Big%20Data%20Applications%20on%20Tiered%20Main%20Memory%20Servers&rft.jtitle=arXiv.org&rft.au=Raybuck,%20Amanda&rft.date=2023-12-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2897285745%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2897285745&rft_id=info:pmid/&rfr_iscdi=true |