Decoding Pixel-Level Image Features From Two-Photon Calcium Signals of Macaque Visual Cortex

Images of visual scenes comprise essential features important for visual cognition of the brain. The complexity of visual features lies at different levels, from simple artificial patterns to natural images with different scenes. It has been a focus of using stimulus images to predict neural respons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 2022-05, Vol.34 (6), p.1369-1397
Hauptverfasser: Zhang, Yijun, Bu, Tong, Zhang, Jiyuan, Tang, Shiming, Yu, Zhaofei, Liu, Jian K., Huang, Tiejun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1397
container_issue 6
container_start_page 1369
container_title Neural computation
container_volume 34
creator Zhang, Yijun
Bu, Tong
Zhang, Jiyuan
Tang, Shiming
Yu, Zhaofei
Liu, Jian K.
Huang, Tiejun
description Images of visual scenes comprise essential features important for visual cognition of the brain. The complexity of visual features lies at different levels, from simple artificial patterns to natural images with different scenes. It has been a focus of using stimulus images to predict neural responses. However, it remains unclear how to extract features from neuronal responses. Here we address this question by leveraging two-photon calcium neural data recorded from the visual cortex of awake macaque monkeys. With stimuli including various categories of artificial patterns and diverse scenes of natural images, we employed a deep neural network decoder inspired by image segmentation technique. Consistent with the notation of sparse coding for natural images, a few neurons with stronger responses dominated the decoding performance, whereas decoding of ar tificial patterns needs a large number of neurons. When natural images using the model pretrained on artificial patterns are decoded, salient features of natural scenes can be extracted, as well as the conventional category information. Altogether, our results give a new perspective on studying neural encoding principles using reverse-engineering decoding strategies.
doi_str_mv 10.1162/neco_a_01498
format Article
fullrecord <record><control><sourceid>proquest_mit_j</sourceid><recordid>TN_cdi_proquest_journals_2897107649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661954507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-2b1f2fe12011f2ebc43f1353ea14244c23f50734fe43d5d82c36a69d2cf38d163</originalsourceid><addsrcrecordid>eNp1kE2LFDEURYMoTtu6cy0BNy4szctXpXZKa-tAiwOO4kII6dRLm6Gq0iZV4-ivt5oZdRRdvcA7Obm5hNwH9gRA86cD-mSdZSAbc4MsQAlWGWM-3iQLZpqmqrWuj8idUs4YYxqYuk2OhFJCMmYW5NOL-Xobhx09iRfYVRs8x44e926HdI1unDIWus6pp6dfU3XyOY1poCvX-Tj19F3cDa4rNAX6xnn3ZUL6IZbJdXSV8ogXd8mtMO_x3tVckvfrl6er19Xm7avj1fNN5aWsx4pvIfCAwBnMB9x6KQIIJdCB5FJ6LoJitZABpWhVa7gX2umm5T4I04IWS_Lo0rvPaQ5RRtvH4rHr3IBpKpZrDY2SB8mSPPwLPUtTPvzCctPUwGotm5l6fEn5nErJGOw-x97lbxaYPbRur7c-4w-upNO2x_YX_LPm3wH7eO3B_7ie_QM9IOdCRm0FB8m05Yxzy5SFxn6P-z8VPwAwJJ7h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2897107649</pqid></control><display><type>article</type><title>Decoding Pixel-Level Image Features From Two-Photon Calcium Signals of Macaque Visual Cortex</title><source>MIT Press Journals</source><creator>Zhang, Yijun ; Bu, Tong ; Zhang, Jiyuan ; Tang, Shiming ; Yu, Zhaofei ; Liu, Jian K. ; Huang, Tiejun</creator><creatorcontrib>Zhang, Yijun ; Bu, Tong ; Zhang, Jiyuan ; Tang, Shiming ; Yu, Zhaofei ; Liu, Jian K. ; Huang, Tiejun</creatorcontrib><description>Images of visual scenes comprise essential features important for visual cognition of the brain. The complexity of visual features lies at different levels, from simple artificial patterns to natural images with different scenes. It has been a focus of using stimulus images to predict neural responses. However, it remains unclear how to extract features from neuronal responses. Here we address this question by leveraging two-photon calcium neural data recorded from the visual cortex of awake macaque monkeys. With stimuli including various categories of artificial patterns and diverse scenes of natural images, we employed a deep neural network decoder inspired by image segmentation technique. Consistent with the notation of sparse coding for natural images, a few neurons with stronger responses dominated the decoding performance, whereas decoding of ar tificial patterns needs a large number of neurons. When natural images using the model pretrained on artificial patterns are decoded, salient features of natural scenes can be extracted, as well as the conventional category information. Altogether, our results give a new perspective on studying neural encoding principles using reverse-engineering decoding strategies.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/neco_a_01498</identifier><identifier>PMID: 35534008</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Artificial neural networks ; Calcium ; Cognition ; Decoding ; Image coding ; Image segmentation ; Neurons ; Photons ; Visual signals ; Visual stimuli</subject><ispartof>Neural computation, 2022-05, Vol.34 (6), p.1369-1397</ispartof><rights>2022 Massachusetts Institute of Technology.</rights><rights>Copyright MIT Press Journals, The 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-2b1f2fe12011f2ebc43f1353ea14244c23f50734fe43d5d82c36a69d2cf38d163</citedby><cites>FETCH-LOGICAL-c447t-2b1f2fe12011f2ebc43f1353ea14244c23f50734fe43d5d82c36a69d2cf38d163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/neco_a_01498$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54009,54010</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35534008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yijun</creatorcontrib><creatorcontrib>Bu, Tong</creatorcontrib><creatorcontrib>Zhang, Jiyuan</creatorcontrib><creatorcontrib>Tang, Shiming</creatorcontrib><creatorcontrib>Yu, Zhaofei</creatorcontrib><creatorcontrib>Liu, Jian K.</creatorcontrib><creatorcontrib>Huang, Tiejun</creatorcontrib><title>Decoding Pixel-Level Image Features From Two-Photon Calcium Signals of Macaque Visual Cortex</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>Images of visual scenes comprise essential features important for visual cognition of the brain. The complexity of visual features lies at different levels, from simple artificial patterns to natural images with different scenes. It has been a focus of using stimulus images to predict neural responses. However, it remains unclear how to extract features from neuronal responses. Here we address this question by leveraging two-photon calcium neural data recorded from the visual cortex of awake macaque monkeys. With stimuli including various categories of artificial patterns and diverse scenes of natural images, we employed a deep neural network decoder inspired by image segmentation technique. Consistent with the notation of sparse coding for natural images, a few neurons with stronger responses dominated the decoding performance, whereas decoding of ar tificial patterns needs a large number of neurons. When natural images using the model pretrained on artificial patterns are decoded, salient features of natural scenes can be extracted, as well as the conventional category information. Altogether, our results give a new perspective on studying neural encoding principles using reverse-engineering decoding strategies.</description><subject>Artificial neural networks</subject><subject>Calcium</subject><subject>Cognition</subject><subject>Decoding</subject><subject>Image coding</subject><subject>Image segmentation</subject><subject>Neurons</subject><subject>Photons</subject><subject>Visual signals</subject><subject>Visual stimuli</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE2LFDEURYMoTtu6cy0BNy4szctXpXZKa-tAiwOO4kII6dRLm6Gq0iZV4-ivt5oZdRRdvcA7Obm5hNwH9gRA86cD-mSdZSAbc4MsQAlWGWM-3iQLZpqmqrWuj8idUs4YYxqYuk2OhFJCMmYW5NOL-Xobhx09iRfYVRs8x44e926HdI1unDIWus6pp6dfU3XyOY1poCvX-Tj19F3cDa4rNAX6xnn3ZUL6IZbJdXSV8ogXd8mtMO_x3tVckvfrl6er19Xm7avj1fNN5aWsx4pvIfCAwBnMB9x6KQIIJdCB5FJ6LoJitZABpWhVa7gX2umm5T4I04IWS_Lo0rvPaQ5RRtvH4rHr3IBpKpZrDY2SB8mSPPwLPUtTPvzCctPUwGotm5l6fEn5nErJGOw-x97lbxaYPbRur7c-4w-upNO2x_YX_LPm3wH7eO3B_7ie_QM9IOdCRm0FB8m05Yxzy5SFxn6P-z8VPwAwJJ7h</recordid><startdate>20220519</startdate><enddate>20220519</enddate><creator>Zhang, Yijun</creator><creator>Bu, Tong</creator><creator>Zhang, Jiyuan</creator><creator>Tang, Shiming</creator><creator>Yu, Zhaofei</creator><creator>Liu, Jian K.</creator><creator>Huang, Tiejun</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20220519</creationdate><title>Decoding Pixel-Level Image Features From Two-Photon Calcium Signals of Macaque Visual Cortex</title><author>Zhang, Yijun ; Bu, Tong ; Zhang, Jiyuan ; Tang, Shiming ; Yu, Zhaofei ; Liu, Jian K. ; Huang, Tiejun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-2b1f2fe12011f2ebc43f1353ea14244c23f50734fe43d5d82c36a69d2cf38d163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Calcium</topic><topic>Cognition</topic><topic>Decoding</topic><topic>Image coding</topic><topic>Image segmentation</topic><topic>Neurons</topic><topic>Photons</topic><topic>Visual signals</topic><topic>Visual stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yijun</creatorcontrib><creatorcontrib>Bu, Tong</creatorcontrib><creatorcontrib>Zhang, Jiyuan</creatorcontrib><creatorcontrib>Tang, Shiming</creatorcontrib><creatorcontrib>Yu, Zhaofei</creatorcontrib><creatorcontrib>Liu, Jian K.</creatorcontrib><creatorcontrib>Huang, Tiejun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yijun</au><au>Bu, Tong</au><au>Zhang, Jiyuan</au><au>Tang, Shiming</au><au>Yu, Zhaofei</au><au>Liu, Jian K.</au><au>Huang, Tiejun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoding Pixel-Level Image Features From Two-Photon Calcium Signals of Macaque Visual Cortex</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2022-05-19</date><risdate>2022</risdate><volume>34</volume><issue>6</issue><spage>1369</spage><epage>1397</epage><pages>1369-1397</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><abstract>Images of visual scenes comprise essential features important for visual cognition of the brain. The complexity of visual features lies at different levels, from simple artificial patterns to natural images with different scenes. It has been a focus of using stimulus images to predict neural responses. However, it remains unclear how to extract features from neuronal responses. Here we address this question by leveraging two-photon calcium neural data recorded from the visual cortex of awake macaque monkeys. With stimuli including various categories of artificial patterns and diverse scenes of natural images, we employed a deep neural network decoder inspired by image segmentation technique. Consistent with the notation of sparse coding for natural images, a few neurons with stronger responses dominated the decoding performance, whereas decoding of ar tificial patterns needs a large number of neurons. When natural images using the model pretrained on artificial patterns are decoded, salient features of natural scenes can be extracted, as well as the conventional category information. Altogether, our results give a new perspective on studying neural encoding principles using reverse-engineering decoding strategies.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>35534008</pmid><doi>10.1162/neco_a_01498</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0899-7667
ispartof Neural computation, 2022-05, Vol.34 (6), p.1369-1397
issn 0899-7667
1530-888X
language eng
recordid cdi_proquest_journals_2897107649
source MIT Press Journals
subjects Artificial neural networks
Calcium
Cognition
Decoding
Image coding
Image segmentation
Neurons
Photons
Visual signals
Visual stimuli
title Decoding Pixel-Level Image Features From Two-Photon Calcium Signals of Macaque Visual Cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_mit_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoding%20Pixel-Level%20Image%20Features%20From%20Two-Photon%20Calcium%20Signals%20of%20Macaque%20Visual%20Cortex&rft.jtitle=Neural%20computation&rft.au=Zhang,%20Yijun&rft.date=2022-05-19&rft.volume=34&rft.issue=6&rft.spage=1369&rft.epage=1397&rft.pages=1369-1397&rft.issn=0899-7667&rft.eissn=1530-888X&rft_id=info:doi/10.1162/neco_a_01498&rft_dat=%3Cproquest_mit_j%3E2661954507%3C/proquest_mit_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2897107649&rft_id=info:pmid/35534008&rfr_iscdi=true