Decoding Pixel-Level Image Features From Two-Photon Calcium Signals of Macaque Visual Cortex
Images of visual scenes comprise essential features important for visual cognition of the brain. The complexity of visual features lies at different levels, from simple artificial patterns to natural images with different scenes. It has been a focus of using stimulus images to predict neural respons...
Gespeichert in:
Veröffentlicht in: | Neural computation 2022-05, Vol.34 (6), p.1369-1397 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1397 |
---|---|
container_issue | 6 |
container_start_page | 1369 |
container_title | Neural computation |
container_volume | 34 |
creator | Zhang, Yijun Bu, Tong Zhang, Jiyuan Tang, Shiming Yu, Zhaofei Liu, Jian K. Huang, Tiejun |
description | Images of visual scenes comprise essential features important for visual cognition of the brain. The complexity of visual features lies at different levels, from simple artificial patterns to natural images with different scenes. It has been a focus of using stimulus images to predict neural responses. However, it remains unclear how to extract features from neuronal responses. Here we address this question by leveraging two-photon calcium neural data recorded from the visual cortex of awake macaque monkeys. With stimuli including various categories of artificial patterns and diverse scenes of natural images, we employed a deep neural network decoder inspired by image segmentation technique. Consistent with the notation of sparse coding for natural images, a few neurons with stronger responses dominated the decoding performance, whereas decoding of ar tificial patterns needs a large number of neurons. When natural images using the model pretrained on artificial patterns are decoded, salient features of natural scenes can be extracted, as well as the conventional category information. Altogether, our results give a new perspective on studying neural encoding principles using reverse-engineering decoding strategies. |
doi_str_mv | 10.1162/neco_a_01498 |
format | Article |
fullrecord | <record><control><sourceid>proquest_mit_j</sourceid><recordid>TN_cdi_proquest_journals_2897107649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661954507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-2b1f2fe12011f2ebc43f1353ea14244c23f50734fe43d5d82c36a69d2cf38d163</originalsourceid><addsrcrecordid>eNp1kE2LFDEURYMoTtu6cy0BNy4szctXpXZKa-tAiwOO4kII6dRLm6Gq0iZV4-ivt5oZdRRdvcA7Obm5hNwH9gRA86cD-mSdZSAbc4MsQAlWGWM-3iQLZpqmqrWuj8idUs4YYxqYuk2OhFJCMmYW5NOL-Xobhx09iRfYVRs8x44e926HdI1unDIWus6pp6dfU3XyOY1poCvX-Tj19F3cDa4rNAX6xnn3ZUL6IZbJdXSV8ogXd8mtMO_x3tVckvfrl6er19Xm7avj1fNN5aWsx4pvIfCAwBnMB9x6KQIIJdCB5FJ6LoJitZABpWhVa7gX2umm5T4I04IWS_Lo0rvPaQ5RRtvH4rHr3IBpKpZrDY2SB8mSPPwLPUtTPvzCctPUwGotm5l6fEn5nErJGOw-x97lbxaYPbRur7c-4w-upNO2x_YX_LPm3wH7eO3B_7ie_QM9IOdCRm0FB8m05Yxzy5SFxn6P-z8VPwAwJJ7h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2897107649</pqid></control><display><type>article</type><title>Decoding Pixel-Level Image Features From Two-Photon Calcium Signals of Macaque Visual Cortex</title><source>MIT Press Journals</source><creator>Zhang, Yijun ; Bu, Tong ; Zhang, Jiyuan ; Tang, Shiming ; Yu, Zhaofei ; Liu, Jian K. ; Huang, Tiejun</creator><creatorcontrib>Zhang, Yijun ; Bu, Tong ; Zhang, Jiyuan ; Tang, Shiming ; Yu, Zhaofei ; Liu, Jian K. ; Huang, Tiejun</creatorcontrib><description>Images of visual scenes comprise essential features important for visual cognition of the brain. The complexity of visual features lies at different levels, from simple artificial patterns to natural images with different scenes. It has been a focus of using stimulus images to predict neural responses. However, it remains unclear how to extract features from neuronal responses. Here we address this question by leveraging two-photon calcium neural data recorded from the visual cortex of awake macaque monkeys. With stimuli including various categories of artificial patterns and diverse scenes of natural images, we employed a deep neural network decoder inspired by image segmentation technique. Consistent with the notation of sparse coding for natural images, a few neurons with stronger responses dominated the decoding performance, whereas decoding of ar tificial patterns needs a large number of neurons. When natural images using the model pretrained on artificial patterns are decoded, salient features of natural scenes can be extracted, as well as the conventional category information. Altogether, our results give a new perspective on studying neural encoding principles using reverse-engineering decoding strategies.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/neco_a_01498</identifier><identifier>PMID: 35534008</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Artificial neural networks ; Calcium ; Cognition ; Decoding ; Image coding ; Image segmentation ; Neurons ; Photons ; Visual signals ; Visual stimuli</subject><ispartof>Neural computation, 2022-05, Vol.34 (6), p.1369-1397</ispartof><rights>2022 Massachusetts Institute of Technology.</rights><rights>Copyright MIT Press Journals, The 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-2b1f2fe12011f2ebc43f1353ea14244c23f50734fe43d5d82c36a69d2cf38d163</citedby><cites>FETCH-LOGICAL-c447t-2b1f2fe12011f2ebc43f1353ea14244c23f50734fe43d5d82c36a69d2cf38d163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/neco_a_01498$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54009,54010</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35534008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yijun</creatorcontrib><creatorcontrib>Bu, Tong</creatorcontrib><creatorcontrib>Zhang, Jiyuan</creatorcontrib><creatorcontrib>Tang, Shiming</creatorcontrib><creatorcontrib>Yu, Zhaofei</creatorcontrib><creatorcontrib>Liu, Jian K.</creatorcontrib><creatorcontrib>Huang, Tiejun</creatorcontrib><title>Decoding Pixel-Level Image Features From Two-Photon Calcium Signals of Macaque Visual Cortex</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>Images of visual scenes comprise essential features important for visual cognition of the brain. The complexity of visual features lies at different levels, from simple artificial patterns to natural images with different scenes. It has been a focus of using stimulus images to predict neural responses. However, it remains unclear how to extract features from neuronal responses. Here we address this question by leveraging two-photon calcium neural data recorded from the visual cortex of awake macaque monkeys. With stimuli including various categories of artificial patterns and diverse scenes of natural images, we employed a deep neural network decoder inspired by image segmentation technique. Consistent with the notation of sparse coding for natural images, a few neurons with stronger responses dominated the decoding performance, whereas decoding of ar tificial patterns needs a large number of neurons. When natural images using the model pretrained on artificial patterns are decoded, salient features of natural scenes can be extracted, as well as the conventional category information. Altogether, our results give a new perspective on studying neural encoding principles using reverse-engineering decoding strategies.</description><subject>Artificial neural networks</subject><subject>Calcium</subject><subject>Cognition</subject><subject>Decoding</subject><subject>Image coding</subject><subject>Image segmentation</subject><subject>Neurons</subject><subject>Photons</subject><subject>Visual signals</subject><subject>Visual stimuli</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE2LFDEURYMoTtu6cy0BNy4szctXpXZKa-tAiwOO4kII6dRLm6Gq0iZV4-ivt5oZdRRdvcA7Obm5hNwH9gRA86cD-mSdZSAbc4MsQAlWGWM-3iQLZpqmqrWuj8idUs4YYxqYuk2OhFJCMmYW5NOL-Xobhx09iRfYVRs8x44e926HdI1unDIWus6pp6dfU3XyOY1poCvX-Tj19F3cDa4rNAX6xnn3ZUL6IZbJdXSV8ogXd8mtMO_x3tVckvfrl6er19Xm7avj1fNN5aWsx4pvIfCAwBnMB9x6KQIIJdCB5FJ6LoJitZABpWhVa7gX2umm5T4I04IWS_Lo0rvPaQ5RRtvH4rHr3IBpKpZrDY2SB8mSPPwLPUtTPvzCctPUwGotm5l6fEn5nErJGOw-x97lbxaYPbRur7c-4w-upNO2x_YX_LPm3wH7eO3B_7ie_QM9IOdCRm0FB8m05Yxzy5SFxn6P-z8VPwAwJJ7h</recordid><startdate>20220519</startdate><enddate>20220519</enddate><creator>Zhang, Yijun</creator><creator>Bu, Tong</creator><creator>Zhang, Jiyuan</creator><creator>Tang, Shiming</creator><creator>Yu, Zhaofei</creator><creator>Liu, Jian K.</creator><creator>Huang, Tiejun</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20220519</creationdate><title>Decoding Pixel-Level Image Features From Two-Photon Calcium Signals of Macaque Visual Cortex</title><author>Zhang, Yijun ; Bu, Tong ; Zhang, Jiyuan ; Tang, Shiming ; Yu, Zhaofei ; Liu, Jian K. ; Huang, Tiejun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-2b1f2fe12011f2ebc43f1353ea14244c23f50734fe43d5d82c36a69d2cf38d163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Calcium</topic><topic>Cognition</topic><topic>Decoding</topic><topic>Image coding</topic><topic>Image segmentation</topic><topic>Neurons</topic><topic>Photons</topic><topic>Visual signals</topic><topic>Visual stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yijun</creatorcontrib><creatorcontrib>Bu, Tong</creatorcontrib><creatorcontrib>Zhang, Jiyuan</creatorcontrib><creatorcontrib>Tang, Shiming</creatorcontrib><creatorcontrib>Yu, Zhaofei</creatorcontrib><creatorcontrib>Liu, Jian K.</creatorcontrib><creatorcontrib>Huang, Tiejun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yijun</au><au>Bu, Tong</au><au>Zhang, Jiyuan</au><au>Tang, Shiming</au><au>Yu, Zhaofei</au><au>Liu, Jian K.</au><au>Huang, Tiejun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoding Pixel-Level Image Features From Two-Photon Calcium Signals of Macaque Visual Cortex</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2022-05-19</date><risdate>2022</risdate><volume>34</volume><issue>6</issue><spage>1369</spage><epage>1397</epage><pages>1369-1397</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><abstract>Images of visual scenes comprise essential features important for visual cognition of the brain. The complexity of visual features lies at different levels, from simple artificial patterns to natural images with different scenes. It has been a focus of using stimulus images to predict neural responses. However, it remains unclear how to extract features from neuronal responses. Here we address this question by leveraging two-photon calcium neural data recorded from the visual cortex of awake macaque monkeys. With stimuli including various categories of artificial patterns and diverse scenes of natural images, we employed a deep neural network decoder inspired by image segmentation technique. Consistent with the notation of sparse coding for natural images, a few neurons with stronger responses dominated the decoding performance, whereas decoding of ar tificial patterns needs a large number of neurons. When natural images using the model pretrained on artificial patterns are decoded, salient features of natural scenes can be extracted, as well as the conventional category information. Altogether, our results give a new perspective on studying neural encoding principles using reverse-engineering decoding strategies.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>35534008</pmid><doi>10.1162/neco_a_01498</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-7667 |
ispartof | Neural computation, 2022-05, Vol.34 (6), p.1369-1397 |
issn | 0899-7667 1530-888X |
language | eng |
recordid | cdi_proquest_journals_2897107649 |
source | MIT Press Journals |
subjects | Artificial neural networks Calcium Cognition Decoding Image coding Image segmentation Neurons Photons Visual signals Visual stimuli |
title | Decoding Pixel-Level Image Features From Two-Photon Calcium Signals of Macaque Visual Cortex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_mit_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoding%20Pixel-Level%20Image%20Features%20From%20Two-Photon%20Calcium%20Signals%20of%20Macaque%20Visual%20Cortex&rft.jtitle=Neural%20computation&rft.au=Zhang,%20Yijun&rft.date=2022-05-19&rft.volume=34&rft.issue=6&rft.spage=1369&rft.epage=1397&rft.pages=1369-1397&rft.issn=0899-7667&rft.eissn=1530-888X&rft_id=info:doi/10.1162/neco_a_01498&rft_dat=%3Cproquest_mit_j%3E2661954507%3C/proquest_mit_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2897107649&rft_id=info:pmid/35534008&rfr_iscdi=true |