Approximate isomorphism of metric structures
We give a formalism for approximate isomorphism in continuous logic simultaneously generalizing those of two papers by Ben Yaacov [2] and by Ben Yaacov, Doucha, Nies, and Tsankov [6], which are largely incompatible. With this we explicitly exhibit Scott sentences for the perturbation systems of the...
Gespeichert in:
Veröffentlicht in: | Mathematical logic quarterly 2023-11, Vol.69 (4), p.482-507 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 507 |
---|---|
container_issue | 4 |
container_start_page | 482 |
container_title | Mathematical logic quarterly |
container_volume | 69 |
creator | Hanson, James E. |
description | We give a formalism for approximate isomorphism in continuous logic simultaneously generalizing those of two papers by Ben Yaacov [2] and by Ben Yaacov, Doucha, Nies, and Tsankov [6], which are largely incompatible. With this we explicitly exhibit Scott sentences for the perturbation systems of the former paper, such as the Banach‐Mazur distance and the Lipschitz distance between metric spaces. Our formalism is simultaneously characterized syntactically by a mild generalization of perturbation systems and semantically by certain elementary classes of two‐sorted structures that witness approximate isomorphism. As an application, we show that the theory of any R$\mathbb {R}$‐tree or ultrametric space of finite radius is stable, improving a result of Carlisle and Henson [8]. |
doi_str_mv | 10.1002/malq.202200076 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2896702824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2896702824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3126-3f7beaa0c9fba1766a8ca06788f0cabda77be743402722886f4af7600e0a7cdb3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMoWFevngtebZ1M2yQ9lsUvqIig55BmE-zS2m7SovvvzVLRo6c5zPPMx0vIJYWUAuBNr7pdioAIAJwdkYgWSJNMcDgmEZQ5JgWj7JSceb8NSEE5ROS6Gkc3fLW9mkzc-qEf3Pje-j4ebNybybU69pOb9TQ748_JiVWdNxc_dUXe7m5f1w9J_Xz_uK7qRGcUWZJZ3hilQJe2UZQzpoRWwLgQFrRqNoqHPs-zHJAjCsFsrixnAAYU15smW5GrZW44bTcbP8ntMLuPsFKiKBkHFJgHKl0o7QbvnbFydOEPt5cU5CEReUhE_iYShHIRPtvO7P-h5VNVv_y537UFZQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2896702824</pqid></control><display><type>article</type><title>Approximate isomorphism of metric structures</title><source>Wiley Journals</source><creator>Hanson, James E.</creator><creatorcontrib>Hanson, James E.</creatorcontrib><description>We give a formalism for approximate isomorphism in continuous logic simultaneously generalizing those of two papers by Ben Yaacov [2] and by Ben Yaacov, Doucha, Nies, and Tsankov [6], which are largely incompatible. With this we explicitly exhibit Scott sentences for the perturbation systems of the former paper, such as the Banach‐Mazur distance and the Lipschitz distance between metric spaces. Our formalism is simultaneously characterized syntactically by a mild generalization of perturbation systems and semantically by certain elementary classes of two‐sorted structures that witness approximate isomorphism. As an application, we show that the theory of any R$\mathbb {R}$‐tree or ultrametric space of finite radius is stable, improving a result of Carlisle and Henson [8].</description><identifier>ISSN: 0942-5616</identifier><identifier>EISSN: 1521-3870</identifier><identifier>DOI: 10.1002/malq.202200076</identifier><language>eng</language><publisher>Berlin: Wiley Subscription Services, Inc</publisher><subject>Formalism ; Isomorphism ; Metric space ; Perturbation</subject><ispartof>Mathematical logic quarterly, 2023-11, Vol.69 (4), p.482-507</ispartof><rights>2023 The Authors. Mathematical Logic Quarterly published by Wiley‐VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3126-3f7beaa0c9fba1766a8ca06788f0cabda77be743402722886f4af7600e0a7cdb3</cites><orcidid>0000-0001-9269-3446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmalq.202200076$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmalq.202200076$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Hanson, James E.</creatorcontrib><title>Approximate isomorphism of metric structures</title><title>Mathematical logic quarterly</title><description>We give a formalism for approximate isomorphism in continuous logic simultaneously generalizing those of two papers by Ben Yaacov [2] and by Ben Yaacov, Doucha, Nies, and Tsankov [6], which are largely incompatible. With this we explicitly exhibit Scott sentences for the perturbation systems of the former paper, such as the Banach‐Mazur distance and the Lipschitz distance between metric spaces. Our formalism is simultaneously characterized syntactically by a mild generalization of perturbation systems and semantically by certain elementary classes of two‐sorted structures that witness approximate isomorphism. As an application, we show that the theory of any R$\mathbb {R}$‐tree or ultrametric space of finite radius is stable, improving a result of Carlisle and Henson [8].</description><subject>Formalism</subject><subject>Isomorphism</subject><subject>Metric space</subject><subject>Perturbation</subject><issn>0942-5616</issn><issn>1521-3870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkE1LxDAQhoMoWFevngtebZ1M2yQ9lsUvqIig55BmE-zS2m7SovvvzVLRo6c5zPPMx0vIJYWUAuBNr7pdioAIAJwdkYgWSJNMcDgmEZQ5JgWj7JSceb8NSEE5ROS6Gkc3fLW9mkzc-qEf3Pje-j4ebNybybU69pOb9TQ748_JiVWdNxc_dUXe7m5f1w9J_Xz_uK7qRGcUWZJZ3hilQJe2UZQzpoRWwLgQFrRqNoqHPs-zHJAjCsFsrixnAAYU15smW5GrZW44bTcbP8ntMLuPsFKiKBkHFJgHKl0o7QbvnbFydOEPt5cU5CEReUhE_iYShHIRPtvO7P-h5VNVv_y537UFZQE</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Hanson, James E.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9269-3446</orcidid></search><sort><creationdate>202311</creationdate><title>Approximate isomorphism of metric structures</title><author>Hanson, James E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3126-3f7beaa0c9fba1766a8ca06788f0cabda77be743402722886f4af7600e0a7cdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Formalism</topic><topic>Isomorphism</topic><topic>Metric space</topic><topic>Perturbation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanson, James E.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><jtitle>Mathematical logic quarterly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanson, James E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate isomorphism of metric structures</atitle><jtitle>Mathematical logic quarterly</jtitle><date>2023-11</date><risdate>2023</risdate><volume>69</volume><issue>4</issue><spage>482</spage><epage>507</epage><pages>482-507</pages><issn>0942-5616</issn><eissn>1521-3870</eissn><abstract>We give a formalism for approximate isomorphism in continuous logic simultaneously generalizing those of two papers by Ben Yaacov [2] and by Ben Yaacov, Doucha, Nies, and Tsankov [6], which are largely incompatible. With this we explicitly exhibit Scott sentences for the perturbation systems of the former paper, such as the Banach‐Mazur distance and the Lipschitz distance between metric spaces. Our formalism is simultaneously characterized syntactically by a mild generalization of perturbation systems and semantically by certain elementary classes of two‐sorted structures that witness approximate isomorphism. As an application, we show that the theory of any R$\mathbb {R}$‐tree or ultrametric space of finite radius is stable, improving a result of Carlisle and Henson [8].</abstract><cop>Berlin</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/malq.202200076</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-9269-3446</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0942-5616 |
ispartof | Mathematical logic quarterly, 2023-11, Vol.69 (4), p.482-507 |
issn | 0942-5616 1521-3870 |
language | eng |
recordid | cdi_proquest_journals_2896702824 |
source | Wiley Journals |
subjects | Formalism Isomorphism Metric space Perturbation |
title | Approximate isomorphism of metric structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A14%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20isomorphism%20of%20metric%20structures&rft.jtitle=Mathematical%20logic%20quarterly&rft.au=Hanson,%20James%20E.&rft.date=2023-11&rft.volume=69&rft.issue=4&rft.spage=482&rft.epage=507&rft.pages=482-507&rft.issn=0942-5616&rft.eissn=1521-3870&rft_id=info:doi/10.1002/malq.202200076&rft_dat=%3Cproquest_cross%3E2896702824%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2896702824&rft_id=info:pmid/&rfr_iscdi=true |