Approximate isomorphism of metric structures

We give a formalism for approximate isomorphism in continuous logic simultaneously generalizing those of two papers by Ben Yaacov [2] and by Ben Yaacov, Doucha, Nies, and Tsankov [6], which are largely incompatible. With this we explicitly exhibit Scott sentences for the perturbation systems of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical logic quarterly 2023-11, Vol.69 (4), p.482-507
1. Verfasser: Hanson, James E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 507
container_issue 4
container_start_page 482
container_title Mathematical logic quarterly
container_volume 69
creator Hanson, James E.
description We give a formalism for approximate isomorphism in continuous logic simultaneously generalizing those of two papers by Ben Yaacov [2] and by Ben Yaacov, Doucha, Nies, and Tsankov [6], which are largely incompatible. With this we explicitly exhibit Scott sentences for the perturbation systems of the former paper, such as the Banach‐Mazur distance and the Lipschitz distance between metric spaces. Our formalism is simultaneously characterized syntactically by a mild generalization of perturbation systems and semantically by certain elementary classes of two‐sorted structures that witness approximate isomorphism. As an application, we show that the theory of any R$\mathbb {R}$‐tree or ultrametric space of finite radius is stable, improving a result of Carlisle and Henson [8].
doi_str_mv 10.1002/malq.202200076
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2896702824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2896702824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3126-3f7beaa0c9fba1766a8ca06788f0cabda77be743402722886f4af7600e0a7cdb3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMoWFevngtebZ1M2yQ9lsUvqIig55BmE-zS2m7SovvvzVLRo6c5zPPMx0vIJYWUAuBNr7pdioAIAJwdkYgWSJNMcDgmEZQ5JgWj7JSceb8NSEE5ROS6Gkc3fLW9mkzc-qEf3Pje-j4ebNybybU69pOb9TQ748_JiVWdNxc_dUXe7m5f1w9J_Xz_uK7qRGcUWZJZ3hilQJe2UZQzpoRWwLgQFrRqNoqHPs-zHJAjCsFsrixnAAYU15smW5GrZW44bTcbP8ntMLuPsFKiKBkHFJgHKl0o7QbvnbFydOEPt5cU5CEReUhE_iYShHIRPtvO7P-h5VNVv_y537UFZQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2896702824</pqid></control><display><type>article</type><title>Approximate isomorphism of metric structures</title><source>Wiley Journals</source><creator>Hanson, James E.</creator><creatorcontrib>Hanson, James E.</creatorcontrib><description>We give a formalism for approximate isomorphism in continuous logic simultaneously generalizing those of two papers by Ben Yaacov [2] and by Ben Yaacov, Doucha, Nies, and Tsankov [6], which are largely incompatible. With this we explicitly exhibit Scott sentences for the perturbation systems of the former paper, such as the Banach‐Mazur distance and the Lipschitz distance between metric spaces. Our formalism is simultaneously characterized syntactically by a mild generalization of perturbation systems and semantically by certain elementary classes of two‐sorted structures that witness approximate isomorphism. As an application, we show that the theory of any R$\mathbb {R}$‐tree or ultrametric space of finite radius is stable, improving a result of Carlisle and Henson [8].</description><identifier>ISSN: 0942-5616</identifier><identifier>EISSN: 1521-3870</identifier><identifier>DOI: 10.1002/malq.202200076</identifier><language>eng</language><publisher>Berlin: Wiley Subscription Services, Inc</publisher><subject>Formalism ; Isomorphism ; Metric space ; Perturbation</subject><ispartof>Mathematical logic quarterly, 2023-11, Vol.69 (4), p.482-507</ispartof><rights>2023 The Authors. Mathematical Logic Quarterly published by Wiley‐VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3126-3f7beaa0c9fba1766a8ca06788f0cabda77be743402722886f4af7600e0a7cdb3</cites><orcidid>0000-0001-9269-3446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmalq.202200076$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmalq.202200076$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Hanson, James E.</creatorcontrib><title>Approximate isomorphism of metric structures</title><title>Mathematical logic quarterly</title><description>We give a formalism for approximate isomorphism in continuous logic simultaneously generalizing those of two papers by Ben Yaacov [2] and by Ben Yaacov, Doucha, Nies, and Tsankov [6], which are largely incompatible. With this we explicitly exhibit Scott sentences for the perturbation systems of the former paper, such as the Banach‐Mazur distance and the Lipschitz distance between metric spaces. Our formalism is simultaneously characterized syntactically by a mild generalization of perturbation systems and semantically by certain elementary classes of two‐sorted structures that witness approximate isomorphism. As an application, we show that the theory of any R$\mathbb {R}$‐tree or ultrametric space of finite radius is stable, improving a result of Carlisle and Henson [8].</description><subject>Formalism</subject><subject>Isomorphism</subject><subject>Metric space</subject><subject>Perturbation</subject><issn>0942-5616</issn><issn>1521-3870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkE1LxDAQhoMoWFevngtebZ1M2yQ9lsUvqIig55BmE-zS2m7SovvvzVLRo6c5zPPMx0vIJYWUAuBNr7pdioAIAJwdkYgWSJNMcDgmEZQ5JgWj7JSceb8NSEE5ROS6Gkc3fLW9mkzc-qEf3Pje-j4ebNybybU69pOb9TQ748_JiVWdNxc_dUXe7m5f1w9J_Xz_uK7qRGcUWZJZ3hilQJe2UZQzpoRWwLgQFrRqNoqHPs-zHJAjCsFsrixnAAYU15smW5GrZW44bTcbP8ntMLuPsFKiKBkHFJgHKl0o7QbvnbFydOEPt5cU5CEReUhE_iYShHIRPtvO7P-h5VNVv_y537UFZQE</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Hanson, James E.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9269-3446</orcidid></search><sort><creationdate>202311</creationdate><title>Approximate isomorphism of metric structures</title><author>Hanson, James E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3126-3f7beaa0c9fba1766a8ca06788f0cabda77be743402722886f4af7600e0a7cdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Formalism</topic><topic>Isomorphism</topic><topic>Metric space</topic><topic>Perturbation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanson, James E.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><jtitle>Mathematical logic quarterly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanson, James E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate isomorphism of metric structures</atitle><jtitle>Mathematical logic quarterly</jtitle><date>2023-11</date><risdate>2023</risdate><volume>69</volume><issue>4</issue><spage>482</spage><epage>507</epage><pages>482-507</pages><issn>0942-5616</issn><eissn>1521-3870</eissn><abstract>We give a formalism for approximate isomorphism in continuous logic simultaneously generalizing those of two papers by Ben Yaacov [2] and by Ben Yaacov, Doucha, Nies, and Tsankov [6], which are largely incompatible. With this we explicitly exhibit Scott sentences for the perturbation systems of the former paper, such as the Banach‐Mazur distance and the Lipschitz distance between metric spaces. Our formalism is simultaneously characterized syntactically by a mild generalization of perturbation systems and semantically by certain elementary classes of two‐sorted structures that witness approximate isomorphism. As an application, we show that the theory of any R$\mathbb {R}$‐tree or ultrametric space of finite radius is stable, improving a result of Carlisle and Henson [8].</abstract><cop>Berlin</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/malq.202200076</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-9269-3446</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0942-5616
ispartof Mathematical logic quarterly, 2023-11, Vol.69 (4), p.482-507
issn 0942-5616
1521-3870
language eng
recordid cdi_proquest_journals_2896702824
source Wiley Journals
subjects Formalism
Isomorphism
Metric space
Perturbation
title Approximate isomorphism of metric structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A14%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20isomorphism%20of%20metric%20structures&rft.jtitle=Mathematical%20logic%20quarterly&rft.au=Hanson,%20James%20E.&rft.date=2023-11&rft.volume=69&rft.issue=4&rft.spage=482&rft.epage=507&rft.pages=482-507&rft.issn=0942-5616&rft.eissn=1521-3870&rft_id=info:doi/10.1002/malq.202200076&rft_dat=%3Cproquest_cross%3E2896702824%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2896702824&rft_id=info:pmid/&rfr_iscdi=true