On partially observed competing risks model for Chen distribution under generalized progressive hybrid censoring

In this paper, we discuss the inference for the competing risks model when the failure times follow Chen distribution. With assumption of two causes of failures, which are partially observed, are considered as independent. The existence and uniqueness of maximum likelihood estimates for model parame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistica Neerlandica 2024-02, Vol.78 (1), p.105-135
Hauptverfasser: Singh, Kundan, Kumar Mahto, Amulya, Mani Tripathi, Yogesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 135
container_issue 1
container_start_page 105
container_title Statistica Neerlandica
container_volume 78
creator Singh, Kundan
Kumar Mahto, Amulya
Mani Tripathi, Yogesh
description In this paper, we discuss the inference for the competing risks model when the failure times follow Chen distribution. With assumption of two causes of failures, which are partially observed, are considered as independent. The existence and uniqueness of maximum likelihood estimates for model parameters are obtained under generalized progressive hybrid censoring. Also, we discussed the classical and Bayesian inferences of the model parameters under the assumption of restricted and nonrestricted parameters. Performance of classical point and interval estimators are compared with Bayesian point and interval estimators by conducting extensive simulation study. In addition to that, for illustration purpose, a real life example is discussed. Finally, some concluding remarks, regarding the presented model, are made.
doi_str_mv 10.1111/stan.12308
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2896446305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2896446305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3348-86ba3a492365a2618fd80fe5d836d8adb299f5ecb35fdac603cfc8b86bb274003</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqVw4QkscUNKsWPHcY5VxZ9U0QPlHDnxpnVJ7WAnoPD0uJQze9nLN7M7g9A1JTMa5y70ys5oyog8QRPKRZ4UWc5P0YQQViSEk_QcXYSwI4TmBRcT1K0s7pTvjWrbEbsqgP8EjWu376A3doO9Ce8B752GFjfO48UWLNYm9N5UQ2-cxYPV4PEGLHjVmu-o7rzbeAjBfALejpU30RBscD4aXqKzRrUBrv72FL093K8XT8ly9fi8mC-TmjEuEykqxRQvUiYylQoqGy1JA5mWTGipdJUWRZNBXbGs0aoWhNVNLasoq9Kcx7RTdHP0jc98DBD6cucGb-PJMpWF4FwwkkXq9kjV3oXgoSk7b_bKjyUl5aHR8tBo-dtohOkR_jItjP-Q5et6_nLU_AAsV3vf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2896446305</pqid></control><display><type>article</type><title>On partially observed competing risks model for Chen distribution under generalized progressive hybrid censoring</title><source>Access via Wiley Online Library</source><creator>Singh, Kundan ; Kumar Mahto, Amulya ; Mani Tripathi, Yogesh</creator><creatorcontrib>Singh, Kundan ; Kumar Mahto, Amulya ; Mani Tripathi, Yogesh</creatorcontrib><description>In this paper, we discuss the inference for the competing risks model when the failure times follow Chen distribution. With assumption of two causes of failures, which are partially observed, are considered as independent. The existence and uniqueness of maximum likelihood estimates for model parameters are obtained under generalized progressive hybrid censoring. Also, we discussed the classical and Bayesian inferences of the model parameters under the assumption of restricted and nonrestricted parameters. Performance of classical point and interval estimators are compared with Bayesian point and interval estimators by conducting extensive simulation study. In addition to that, for illustration purpose, a real life example is discussed. Finally, some concluding remarks, regarding the presented model, are made.</description><identifier>ISSN: 0039-0402</identifier><identifier>EISSN: 1467-9574</identifier><identifier>DOI: 10.1111/stan.12308</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>asymptotic confidence interval ; Bayes estimates ; Bayesian analysis ; Chen distribution ; competing risk model ; Estimators ; Failure times ; generalized progressive hybrid censoring ; Mathematical models ; Maximum likelihood estimates ; maximum likelihood estimation ; MCMC algorithm ; Parameters</subject><ispartof>Statistica Neerlandica, 2024-02, Vol.78 (1), p.105-135</ispartof><rights>2023 Netherlands Society for Statistics and Operations Research.</rights><rights>2024 Netherlands Society for Statistics and Operations Research.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3348-86ba3a492365a2618fd80fe5d836d8adb299f5ecb35fdac603cfc8b86bb274003</citedby><cites>FETCH-LOGICAL-c3348-86ba3a492365a2618fd80fe5d836d8adb299f5ecb35fdac603cfc8b86bb274003</cites><orcidid>0000-0001-8389-5257</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fstan.12308$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fstan.12308$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Singh, Kundan</creatorcontrib><creatorcontrib>Kumar Mahto, Amulya</creatorcontrib><creatorcontrib>Mani Tripathi, Yogesh</creatorcontrib><title>On partially observed competing risks model for Chen distribution under generalized progressive hybrid censoring</title><title>Statistica Neerlandica</title><description>In this paper, we discuss the inference for the competing risks model when the failure times follow Chen distribution. With assumption of two causes of failures, which are partially observed, are considered as independent. The existence and uniqueness of maximum likelihood estimates for model parameters are obtained under generalized progressive hybrid censoring. Also, we discussed the classical and Bayesian inferences of the model parameters under the assumption of restricted and nonrestricted parameters. Performance of classical point and interval estimators are compared with Bayesian point and interval estimators by conducting extensive simulation study. In addition to that, for illustration purpose, a real life example is discussed. Finally, some concluding remarks, regarding the presented model, are made.</description><subject>asymptotic confidence interval</subject><subject>Bayes estimates</subject><subject>Bayesian analysis</subject><subject>Chen distribution</subject><subject>competing risk model</subject><subject>Estimators</subject><subject>Failure times</subject><subject>generalized progressive hybrid censoring</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimates</subject><subject>maximum likelihood estimation</subject><subject>MCMC algorithm</subject><subject>Parameters</subject><issn>0039-0402</issn><issn>1467-9574</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqVw4QkscUNKsWPHcY5VxZ9U0QPlHDnxpnVJ7WAnoPD0uJQze9nLN7M7g9A1JTMa5y70ys5oyog8QRPKRZ4UWc5P0YQQViSEk_QcXYSwI4TmBRcT1K0s7pTvjWrbEbsqgP8EjWu376A3doO9Ce8B752GFjfO48UWLNYm9N5UQ2-cxYPV4PEGLHjVmu-o7rzbeAjBfALejpU30RBscD4aXqKzRrUBrv72FL093K8XT8ly9fi8mC-TmjEuEykqxRQvUiYylQoqGy1JA5mWTGipdJUWRZNBXbGs0aoWhNVNLasoq9Kcx7RTdHP0jc98DBD6cucGb-PJMpWF4FwwkkXq9kjV3oXgoSk7b_bKjyUl5aHR8tBo-dtohOkR_jItjP-Q5et6_nLU_AAsV3vf</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Singh, Kundan</creator><creator>Kumar Mahto, Amulya</creator><creator>Mani Tripathi, Yogesh</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8389-5257</orcidid></search><sort><creationdate>202402</creationdate><title>On partially observed competing risks model for Chen distribution under generalized progressive hybrid censoring</title><author>Singh, Kundan ; Kumar Mahto, Amulya ; Mani Tripathi, Yogesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3348-86ba3a492365a2618fd80fe5d836d8adb299f5ecb35fdac603cfc8b86bb274003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>asymptotic confidence interval</topic><topic>Bayes estimates</topic><topic>Bayesian analysis</topic><topic>Chen distribution</topic><topic>competing risk model</topic><topic>Estimators</topic><topic>Failure times</topic><topic>generalized progressive hybrid censoring</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimates</topic><topic>maximum likelihood estimation</topic><topic>MCMC algorithm</topic><topic>Parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Kundan</creatorcontrib><creatorcontrib>Kumar Mahto, Amulya</creatorcontrib><creatorcontrib>Mani Tripathi, Yogesh</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Statistica Neerlandica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Kundan</au><au>Kumar Mahto, Amulya</au><au>Mani Tripathi, Yogesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On partially observed competing risks model for Chen distribution under generalized progressive hybrid censoring</atitle><jtitle>Statistica Neerlandica</jtitle><date>2024-02</date><risdate>2024</risdate><volume>78</volume><issue>1</issue><spage>105</spage><epage>135</epage><pages>105-135</pages><issn>0039-0402</issn><eissn>1467-9574</eissn><abstract>In this paper, we discuss the inference for the competing risks model when the failure times follow Chen distribution. With assumption of two causes of failures, which are partially observed, are considered as independent. The existence and uniqueness of maximum likelihood estimates for model parameters are obtained under generalized progressive hybrid censoring. Also, we discussed the classical and Bayesian inferences of the model parameters under the assumption of restricted and nonrestricted parameters. Performance of classical point and interval estimators are compared with Bayesian point and interval estimators by conducting extensive simulation study. In addition to that, for illustration purpose, a real life example is discussed. Finally, some concluding remarks, regarding the presented model, are made.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/stan.12308</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0001-8389-5257</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0039-0402
ispartof Statistica Neerlandica, 2024-02, Vol.78 (1), p.105-135
issn 0039-0402
1467-9574
language eng
recordid cdi_proquest_journals_2896446305
source Access via Wiley Online Library
subjects asymptotic confidence interval
Bayes estimates
Bayesian analysis
Chen distribution
competing risk model
Estimators
Failure times
generalized progressive hybrid censoring
Mathematical models
Maximum likelihood estimates
maximum likelihood estimation
MCMC algorithm
Parameters
title On partially observed competing risks model for Chen distribution under generalized progressive hybrid censoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A38%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20partially%20observed%20competing%20risks%20model%20for%20Chen%20distribution%20under%20generalized%20progressive%20hybrid%20censoring&rft.jtitle=Statistica%20Neerlandica&rft.au=Singh,%20Kundan&rft.date=2024-02&rft.volume=78&rft.issue=1&rft.spage=105&rft.epage=135&rft.pages=105-135&rft.issn=0039-0402&rft.eissn=1467-9574&rft_id=info:doi/10.1111/stan.12308&rft_dat=%3Cproquest_cross%3E2896446305%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2896446305&rft_id=info:pmid/&rfr_iscdi=true