New geometric magnetic energy according to geometric Frenet formulas

Geometric calculus is a special case of the Non-Newtonian Calculus introduced by Grossman and Katz (Non-Newtonian calculus, Lee Press, Pigeon Cove, 1972). Also, it is a more convenient calculation method for situations where the geometric increment is more meaningful than the arithmetic increment. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical and quantum electronics 2024, Vol.56 (1), Article 81
Hauptverfasser: Ekinci, Alper, Bas, Selçuk, Körpinar, Talat, Körpinar, Zeliha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Optical and quantum electronics
container_volume 56
creator Ekinci, Alper
Bas, Selçuk
Körpinar, Talat
Körpinar, Zeliha
description Geometric calculus is a special case of the Non-Newtonian Calculus introduced by Grossman and Katz (Non-Newtonian calculus, Lee Press, Pigeon Cove, 1972). Also, it is a more convenient calculation method for situations where the geometric increment is more meaningful than the arithmetic increment. In this study, geometric curves are defined and geometric Frenet–Serret formulas for these curves are presented. Furthermore, we give applications of these concepts to geometric magnetic curves.
doi_str_mv 10.1007/s11082-023-05569-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2896316036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2896316036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ec4167a9856a0b509a73259124005d666b3243a4615d9868f020251fd42f4dca3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-hMvjY5SrUqiF4UvIV0N7u0dDc12SLtrze6gp48zcA87zvwEHKOcIkA5VVCBM0oME5BSmXo_oBMUJaMaizfDskEOCiqDZpjcpLSCgCUkDAhN0_-o2h96PwQl1XRubb3Q15872O7K1xVhVgv-7YYwh9sHvN9KJoQu-3apVNy1Lh18mc_c0pe57cvs3v6-Hz3MLt-pBVHM1BfCVSlM1oqBwsJxpWcSYNMAMhaKbXgTHAnFMraaKUbYMAkNrVgjagrx6fkYuzdxPC-9Wmwq7CNfX5pmTaKowKuMsVGqoohpegbu4nLzsWdRbBftuxoy2Zb9tuW3ecQH0Mpw33r42_1P6lPxldsWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2896316036</pqid></control><display><type>article</type><title>New geometric magnetic energy according to geometric Frenet formulas</title><source>SpringerLink Journals</source><creator>Ekinci, Alper ; Bas, Selçuk ; Körpinar, Talat ; Körpinar, Zeliha</creator><creatorcontrib>Ekinci, Alper ; Bas, Selçuk ; Körpinar, Talat ; Körpinar, Zeliha</creatorcontrib><description>Geometric calculus is a special case of the Non-Newtonian Calculus introduced by Grossman and Katz (Non-Newtonian calculus, Lee Press, Pigeon Cove, 1972). Also, it is a more convenient calculation method for situations where the geometric increment is more meaningful than the arithmetic increment. In this study, geometric curves are defined and geometric Frenet–Serret formulas for these curves are presented. Furthermore, we give applications of these concepts to geometric magnetic curves.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-023-05569-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Computer Communication Networks ; Curves ; Electrical Engineering ; Lasers ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy</subject><ispartof>Optical and quantum electronics, 2024, Vol.56 (1), Article 81</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ec4167a9856a0b509a73259124005d666b3243a4615d9868f020251fd42f4dca3</citedby><cites>FETCH-LOGICAL-c319t-ec4167a9856a0b509a73259124005d666b3243a4615d9868f020251fd42f4dca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-023-05569-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-023-05569-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ekinci, Alper</creatorcontrib><creatorcontrib>Bas, Selçuk</creatorcontrib><creatorcontrib>Körpinar, Talat</creatorcontrib><creatorcontrib>Körpinar, Zeliha</creatorcontrib><title>New geometric magnetic energy according to geometric Frenet formulas</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>Geometric calculus is a special case of the Non-Newtonian Calculus introduced by Grossman and Katz (Non-Newtonian calculus, Lee Press, Pigeon Cove, 1972). Also, it is a more convenient calculation method for situations where the geometric increment is more meaningful than the arithmetic increment. In this study, geometric curves are defined and geometric Frenet–Serret formulas for these curves are presented. Furthermore, we give applications of these concepts to geometric magnetic curves.</description><subject>Characterization and Evaluation of Materials</subject><subject>Computer Communication Networks</subject><subject>Curves</subject><subject>Electrical Engineering</subject><subject>Lasers</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-hMvjY5SrUqiF4UvIV0N7u0dDc12SLtrze6gp48zcA87zvwEHKOcIkA5VVCBM0oME5BSmXo_oBMUJaMaizfDskEOCiqDZpjcpLSCgCUkDAhN0_-o2h96PwQl1XRubb3Q15872O7K1xVhVgv-7YYwh9sHvN9KJoQu-3apVNy1Lh18mc_c0pe57cvs3v6-Hz3MLt-pBVHM1BfCVSlM1oqBwsJxpWcSYNMAMhaKbXgTHAnFMraaKUbYMAkNrVgjagrx6fkYuzdxPC-9Wmwq7CNfX5pmTaKowKuMsVGqoohpegbu4nLzsWdRbBftuxoy2Zb9tuW3ecQH0Mpw33r42_1P6lPxldsWg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ekinci, Alper</creator><creator>Bas, Selçuk</creator><creator>Körpinar, Talat</creator><creator>Körpinar, Zeliha</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>New geometric magnetic energy according to geometric Frenet formulas</title><author>Ekinci, Alper ; Bas, Selçuk ; Körpinar, Talat ; Körpinar, Zeliha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ec4167a9856a0b509a73259124005d666b3243a4615d9868f020251fd42f4dca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Computer Communication Networks</topic><topic>Curves</topic><topic>Electrical Engineering</topic><topic>Lasers</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ekinci, Alper</creatorcontrib><creatorcontrib>Bas, Selçuk</creatorcontrib><creatorcontrib>Körpinar, Talat</creatorcontrib><creatorcontrib>Körpinar, Zeliha</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ekinci, Alper</au><au>Bas, Selçuk</au><au>Körpinar, Talat</au><au>Körpinar, Zeliha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New geometric magnetic energy according to geometric Frenet formulas</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2024</date><risdate>2024</risdate><volume>56</volume><issue>1</issue><artnum>81</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>Geometric calculus is a special case of the Non-Newtonian Calculus introduced by Grossman and Katz (Non-Newtonian calculus, Lee Press, Pigeon Cove, 1972). Also, it is a more convenient calculation method for situations where the geometric increment is more meaningful than the arithmetic increment. In this study, geometric curves are defined and geometric Frenet–Serret formulas for these curves are presented. Furthermore, we give applications of these concepts to geometric magnetic curves.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-023-05569-z</doi></addata></record>
fulltext fulltext
identifier ISSN: 0306-8919
ispartof Optical and quantum electronics, 2024, Vol.56 (1), Article 81
issn 0306-8919
1572-817X
language eng
recordid cdi_proquest_journals_2896316036
source SpringerLink Journals
subjects Characterization and Evaluation of Materials
Computer Communication Networks
Curves
Electrical Engineering
Lasers
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
title New geometric magnetic energy according to geometric Frenet formulas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A12%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20geometric%20magnetic%20energy%20according%20to%20geometric%20Frenet%20formulas&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Ekinci,%20Alper&rft.date=2024&rft.volume=56&rft.issue=1&rft.artnum=81&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-023-05569-z&rft_dat=%3Cproquest_cross%3E2896316036%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2896316036&rft_id=info:pmid/&rfr_iscdi=true