New geometric magnetic energy according to geometric Frenet formulas
Geometric calculus is a special case of the Non-Newtonian Calculus introduced by Grossman and Katz (Non-Newtonian calculus, Lee Press, Pigeon Cove, 1972). Also, it is a more convenient calculation method for situations where the geometric increment is more meaningful than the arithmetic increment. I...
Gespeichert in:
Veröffentlicht in: | Optical and quantum electronics 2024, Vol.56 (1), Article 81 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Optical and quantum electronics |
container_volume | 56 |
creator | Ekinci, Alper Bas, Selçuk Körpinar, Talat Körpinar, Zeliha |
description | Geometric calculus is a special case of the Non-Newtonian Calculus introduced by Grossman and Katz (Non-Newtonian calculus, Lee Press, Pigeon Cove, 1972). Also, it is a more convenient calculation method for situations where the geometric increment is more meaningful than the arithmetic increment. In this study, geometric curves are defined and geometric Frenet–Serret formulas for these curves are presented. Furthermore, we give applications of these concepts to geometric magnetic curves. |
doi_str_mv | 10.1007/s11082-023-05569-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2896316036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2896316036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ec4167a9856a0b509a73259124005d666b3243a4615d9868f020251fd42f4dca3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-hMvjY5SrUqiF4UvIV0N7u0dDc12SLtrze6gp48zcA87zvwEHKOcIkA5VVCBM0oME5BSmXo_oBMUJaMaizfDskEOCiqDZpjcpLSCgCUkDAhN0_-o2h96PwQl1XRubb3Q15872O7K1xVhVgv-7YYwh9sHvN9KJoQu-3apVNy1Lh18mc_c0pe57cvs3v6-Hz3MLt-pBVHM1BfCVSlM1oqBwsJxpWcSYNMAMhaKbXgTHAnFMraaKUbYMAkNrVgjagrx6fkYuzdxPC-9Wmwq7CNfX5pmTaKowKuMsVGqoohpegbu4nLzsWdRbBftuxoy2Zb9tuW3ecQH0Mpw33r42_1P6lPxldsWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2896316036</pqid></control><display><type>article</type><title>New geometric magnetic energy according to geometric Frenet formulas</title><source>SpringerLink Journals</source><creator>Ekinci, Alper ; Bas, Selçuk ; Körpinar, Talat ; Körpinar, Zeliha</creator><creatorcontrib>Ekinci, Alper ; Bas, Selçuk ; Körpinar, Talat ; Körpinar, Zeliha</creatorcontrib><description>Geometric calculus is a special case of the Non-Newtonian Calculus introduced by Grossman and Katz (Non-Newtonian calculus, Lee Press, Pigeon Cove, 1972). Also, it is a more convenient calculation method for situations where the geometric increment is more meaningful than the arithmetic increment. In this study, geometric curves are defined and geometric Frenet–Serret formulas for these curves are presented. Furthermore, we give applications of these concepts to geometric magnetic curves.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-023-05569-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Computer Communication Networks ; Curves ; Electrical Engineering ; Lasers ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy</subject><ispartof>Optical and quantum electronics, 2024, Vol.56 (1), Article 81</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ec4167a9856a0b509a73259124005d666b3243a4615d9868f020251fd42f4dca3</citedby><cites>FETCH-LOGICAL-c319t-ec4167a9856a0b509a73259124005d666b3243a4615d9868f020251fd42f4dca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-023-05569-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-023-05569-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ekinci, Alper</creatorcontrib><creatorcontrib>Bas, Selçuk</creatorcontrib><creatorcontrib>Körpinar, Talat</creatorcontrib><creatorcontrib>Körpinar, Zeliha</creatorcontrib><title>New geometric magnetic energy according to geometric Frenet formulas</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>Geometric calculus is a special case of the Non-Newtonian Calculus introduced by Grossman and Katz (Non-Newtonian calculus, Lee Press, Pigeon Cove, 1972). Also, it is a more convenient calculation method for situations where the geometric increment is more meaningful than the arithmetic increment. In this study, geometric curves are defined and geometric Frenet–Serret formulas for these curves are presented. Furthermore, we give applications of these concepts to geometric magnetic curves.</description><subject>Characterization and Evaluation of Materials</subject><subject>Computer Communication Networks</subject><subject>Curves</subject><subject>Electrical Engineering</subject><subject>Lasers</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-hMvjY5SrUqiF4UvIV0N7u0dDc12SLtrze6gp48zcA87zvwEHKOcIkA5VVCBM0oME5BSmXo_oBMUJaMaizfDskEOCiqDZpjcpLSCgCUkDAhN0_-o2h96PwQl1XRubb3Q15872O7K1xVhVgv-7YYwh9sHvN9KJoQu-3apVNy1Lh18mc_c0pe57cvs3v6-Hz3MLt-pBVHM1BfCVSlM1oqBwsJxpWcSYNMAMhaKbXgTHAnFMraaKUbYMAkNrVgjagrx6fkYuzdxPC-9Wmwq7CNfX5pmTaKowKuMsVGqoohpegbu4nLzsWdRbBftuxoy2Zb9tuW3ecQH0Mpw33r42_1P6lPxldsWg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ekinci, Alper</creator><creator>Bas, Selçuk</creator><creator>Körpinar, Talat</creator><creator>Körpinar, Zeliha</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>New geometric magnetic energy according to geometric Frenet formulas</title><author>Ekinci, Alper ; Bas, Selçuk ; Körpinar, Talat ; Körpinar, Zeliha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ec4167a9856a0b509a73259124005d666b3243a4615d9868f020251fd42f4dca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Computer Communication Networks</topic><topic>Curves</topic><topic>Electrical Engineering</topic><topic>Lasers</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ekinci, Alper</creatorcontrib><creatorcontrib>Bas, Selçuk</creatorcontrib><creatorcontrib>Körpinar, Talat</creatorcontrib><creatorcontrib>Körpinar, Zeliha</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ekinci, Alper</au><au>Bas, Selçuk</au><au>Körpinar, Talat</au><au>Körpinar, Zeliha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New geometric magnetic energy according to geometric Frenet formulas</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2024</date><risdate>2024</risdate><volume>56</volume><issue>1</issue><artnum>81</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>Geometric calculus is a special case of the Non-Newtonian Calculus introduced by Grossman and Katz (Non-Newtonian calculus, Lee Press, Pigeon Cove, 1972). Also, it is a more convenient calculation method for situations where the geometric increment is more meaningful than the arithmetic increment. In this study, geometric curves are defined and geometric Frenet–Serret formulas for these curves are presented. Furthermore, we give applications of these concepts to geometric magnetic curves.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-023-05569-z</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-8919 |
ispartof | Optical and quantum electronics, 2024, Vol.56 (1), Article 81 |
issn | 0306-8919 1572-817X |
language | eng |
recordid | cdi_proquest_journals_2896316036 |
source | SpringerLink Journals |
subjects | Characterization and Evaluation of Materials Computer Communication Networks Curves Electrical Engineering Lasers Optical Devices Optics Photonics Physics Physics and Astronomy |
title | New geometric magnetic energy according to geometric Frenet formulas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A12%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20geometric%20magnetic%20energy%20according%20to%20geometric%20Frenet%20formulas&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Ekinci,%20Alper&rft.date=2024&rft.volume=56&rft.issue=1&rft.artnum=81&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-023-05569-z&rft_dat=%3Cproquest_cross%3E2896316036%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2896316036&rft_id=info:pmid/&rfr_iscdi=true |