Billiard in a rotating half-plane

The main objective of this research is to study the properties of a billiard system in an unbounded domain with moving boundary. We consider a system consisting of an infinite rod (a straight line) and a ball (a massless point) on the plane. The rod rotates uniformly around one of its points and exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamical and control systems 2023-10, Vol.29 (4), p.1695-1707
Hauptverfasser: Kryzhevich, Sergey, Plakhov, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1707
container_issue 4
container_start_page 1695
container_title Journal of dynamical and control systems
container_volume 29
creator Kryzhevich, Sergey
Plakhov, Alexander
description The main objective of this research is to study the properties of a billiard system in an unbounded domain with moving boundary. We consider a system consisting of an infinite rod (a straight line) and a ball (a massless point) on the plane. The rod rotates uniformly around one of its points and experiences elastic collisions with the ball. We define a mathematical model for the dynamics of such a system and write down asymptotic formulae for its motions. In particular, we determine existence and uniqueness of solutions. We find all possible grazing impacts of the ball. Besides, we demonstrate that for almost every initial condition, the ball goes to infinity exponentially fast, with the time intervals between neighboring collisions tending to zero. The approach developed in this paper is an original combination of methods of Billiards and Vibro-Impact Dynamics. It could be a base for studying more complicated systems of similar types.
doi_str_mv 10.1007/s10883-023-09655-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2896067386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2896067386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-bb452331bf1f3a2b56bf4463baa0b96c45763c8add70ababae9b182fe59cf4093</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouK5-AU8Vz9HJOznq4gsWvOg5JG2ydqltTboH99MbreBNhmHm8H_AD6FzAlcEQF1nAlozDLSskULg_QFaEKEY1tLow_KDMpgqyo_RSc5bADCa6QW6uG27rnWpqdq-clUaJje1_aZ6c13EY-f6cIqOoutyOPu9S_R6f_eyesTr54en1c0a10ybCXvPBWWM-Egic9QL6SPnknnnwBtZc6Ekq7VrGgXOlwnGE01jEKaOHAxboss5d0zDxy7kyW6HXepLpaXaSJCKaVlUdFbVacg5hWjH1L679GkJ2G8UdkZhCwr7g8Lui4nNplzE_Sakv-h_XF91P2DO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2896067386</pqid></control><display><type>article</type><title>Billiard in a rotating half-plane</title><source>SpringerNature Journals</source><creator>Kryzhevich, Sergey ; Plakhov, Alexander</creator><creatorcontrib>Kryzhevich, Sergey ; Plakhov, Alexander</creatorcontrib><description>The main objective of this research is to study the properties of a billiard system in an unbounded domain with moving boundary. We consider a system consisting of an infinite rod (a straight line) and a ball (a massless point) on the plane. The rod rotates uniformly around one of its points and experiences elastic collisions with the ball. We define a mathematical model for the dynamics of such a system and write down asymptotic formulae for its motions. In particular, we determine existence and uniqueness of solutions. We find all possible grazing impacts of the ball. Besides, we demonstrate that for almost every initial condition, the ball goes to infinity exponentially fast, with the time intervals between neighboring collisions tending to zero. The approach developed in this paper is an original combination of methods of Billiards and Vibro-Impact Dynamics. It could be a base for studying more complicated systems of similar types.</description><identifier>ISSN: 1079-2724</identifier><identifier>EISSN: 1573-8698</identifier><identifier>DOI: 10.1007/s10883-023-09655-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Collisions ; Control ; Dynamical Systems ; Dynamical Systems and Ergodic Theory ; Elastic scattering ; Half planes ; Mathematics ; Mathematics and Statistics ; Original Research ; Straight lines ; Systems Theory ; Vibration</subject><ispartof>Journal of dynamical and control systems, 2023-10, Vol.29 (4), p.1695-1707</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-bb452331bf1f3a2b56bf4463baa0b96c45763c8add70ababae9b182fe59cf4093</citedby><cites>FETCH-LOGICAL-c389t-bb452331bf1f3a2b56bf4463baa0b96c45763c8add70ababae9b182fe59cf4093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10883-023-09655-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10883-023-09655-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kryzhevich, Sergey</creatorcontrib><creatorcontrib>Plakhov, Alexander</creatorcontrib><title>Billiard in a rotating half-plane</title><title>Journal of dynamical and control systems</title><addtitle>J Dyn Control Syst</addtitle><description>The main objective of this research is to study the properties of a billiard system in an unbounded domain with moving boundary. We consider a system consisting of an infinite rod (a straight line) and a ball (a massless point) on the plane. The rod rotates uniformly around one of its points and experiences elastic collisions with the ball. We define a mathematical model for the dynamics of such a system and write down asymptotic formulae for its motions. In particular, we determine existence and uniqueness of solutions. We find all possible grazing impacts of the ball. Besides, we demonstrate that for almost every initial condition, the ball goes to infinity exponentially fast, with the time intervals between neighboring collisions tending to zero. The approach developed in this paper is an original combination of methods of Billiards and Vibro-Impact Dynamics. It could be a base for studying more complicated systems of similar types.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Collisions</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Elastic scattering</subject><subject>Half planes</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Research</subject><subject>Straight lines</subject><subject>Systems Theory</subject><subject>Vibration</subject><issn>1079-2724</issn><issn>1573-8698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLxDAQx4MouK5-AU8Vz9HJOznq4gsWvOg5JG2ydqltTboH99MbreBNhmHm8H_AD6FzAlcEQF1nAlozDLSskULg_QFaEKEY1tLow_KDMpgqyo_RSc5bADCa6QW6uG27rnWpqdq-clUaJje1_aZ6c13EY-f6cIqOoutyOPu9S_R6f_eyesTr54en1c0a10ybCXvPBWWM-Egic9QL6SPnknnnwBtZc6Ekq7VrGgXOlwnGE01jEKaOHAxboss5d0zDxy7kyW6HXepLpaXaSJCKaVlUdFbVacg5hWjH1L679GkJ2G8UdkZhCwr7g8Lui4nNplzE_Sakv-h_XF91P2DO</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Kryzhevich, Sergey</creator><creator>Plakhov, Alexander</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>Billiard in a rotating half-plane</title><author>Kryzhevich, Sergey ; Plakhov, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-bb452331bf1f3a2b56bf4463baa0b96c45763c8add70ababae9b182fe59cf4093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Collisions</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Elastic scattering</topic><topic>Half planes</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Research</topic><topic>Straight lines</topic><topic>Systems Theory</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kryzhevich, Sergey</creatorcontrib><creatorcontrib>Plakhov, Alexander</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of dynamical and control systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kryzhevich, Sergey</au><au>Plakhov, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Billiard in a rotating half-plane</atitle><jtitle>Journal of dynamical and control systems</jtitle><stitle>J Dyn Control Syst</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>29</volume><issue>4</issue><spage>1695</spage><epage>1707</epage><pages>1695-1707</pages><issn>1079-2724</issn><eissn>1573-8698</eissn><abstract>The main objective of this research is to study the properties of a billiard system in an unbounded domain with moving boundary. We consider a system consisting of an infinite rod (a straight line) and a ball (a massless point) on the plane. The rod rotates uniformly around one of its points and experiences elastic collisions with the ball. We define a mathematical model for the dynamics of such a system and write down asymptotic formulae for its motions. In particular, we determine existence and uniqueness of solutions. We find all possible grazing impacts of the ball. Besides, we demonstrate that for almost every initial condition, the ball goes to infinity exponentially fast, with the time intervals between neighboring collisions tending to zero. The approach developed in this paper is an original combination of methods of Billiards and Vibro-Impact Dynamics. It could be a base for studying more complicated systems of similar types.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10883-023-09655-z</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1079-2724
ispartof Journal of dynamical and control systems, 2023-10, Vol.29 (4), p.1695-1707
issn 1079-2724
1573-8698
language eng
recordid cdi_proquest_journals_2896067386
source SpringerNature Journals
subjects Calculus of Variations and Optimal Control
Optimization
Collisions
Control
Dynamical Systems
Dynamical Systems and Ergodic Theory
Elastic scattering
Half planes
Mathematics
Mathematics and Statistics
Original Research
Straight lines
Systems Theory
Vibration
title Billiard in a rotating half-plane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Billiard%20in%20a%20rotating%20half-plane&rft.jtitle=Journal%20of%20dynamical%20and%20control%20systems&rft.au=Kryzhevich,%20Sergey&rft.date=2023-10-01&rft.volume=29&rft.issue=4&rft.spage=1695&rft.epage=1707&rft.pages=1695-1707&rft.issn=1079-2724&rft.eissn=1573-8698&rft_id=info:doi/10.1007/s10883-023-09655-z&rft_dat=%3Cproquest_cross%3E2896067386%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2896067386&rft_id=info:pmid/&rfr_iscdi=true