DAP: Domain-aware Prompt Learning for Vision-and-Language Navigation

Following language instructions to navigate in unseen environments is a challenging task for autonomous embodied agents. With strong representation capabilities, pretrained vision-and-language models are widely used in VLN. However, most of them are trained on web-crawled general-purpose datasets, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-12
Hauptverfasser: Liu, Ting, Hu, Yue, Wu, Wansen, Wang, Youkai, Xu, Kai, Yin, Quanjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Liu, Ting
Hu, Yue
Wu, Wansen
Wang, Youkai
Xu, Kai
Yin, Quanjun
description Following language instructions to navigate in unseen environments is a challenging task for autonomous embodied agents. With strong representation capabilities, pretrained vision-and-language models are widely used in VLN. However, most of them are trained on web-crawled general-purpose datasets, which incurs a considerable domain gap when used for VLN tasks. To address the problem, we propose a novel and model-agnostic domain-aware prompt learning (DAP) framework. For equipping the pretrained models with specific object-level and scene-level cross-modal alignment in VLN tasks, DAP applies a low-cost prompt tuning paradigm to learn soft visual prompts for extracting in-domain image semantics. Specifically, we first generate a set of in-domain image-text pairs with the help of the CLIP model. Then we introduce soft visual prompts in the input space of the visual encoder in a pretrained model. DAP injects in-domain visual knowledge into the visual encoder of the pretrained model in an efficient way. Experimental results on both R2R and REVERIE show the superiority of DAP compared to existing state-of-the-art methods.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2896062857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2896062857</sourcerecordid><originalsourceid>FETCH-proquest_journals_28960628573</originalsourceid><addsrcrecordid>eNqNir0KwjAYAIMgWLTvEHAOxC_2RzcxikORDuJaPjANKTapSauvbwYfwOng7mYkASE2rNwCLEgaQsc5h7yALBMJkfJQ76l0PRrL8INe0dq7fhhppdBbYzVtnad3E4yLg32wCq2eUCt6xbfROEa_IvMWn0GlPy7J-ny6HS9s8O41qTA2nZu8jamBcpfzHMqsEP9dX7llOck</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2896062857</pqid></control><display><type>article</type><title>DAP: Domain-aware Prompt Learning for Vision-and-Language Navigation</title><source>Free E- Journals</source><creator>Liu, Ting ; Hu, Yue ; Wu, Wansen ; Wang, Youkai ; Xu, Kai ; Yin, Quanjun</creator><creatorcontrib>Liu, Ting ; Hu, Yue ; Wu, Wansen ; Wang, Youkai ; Xu, Kai ; Yin, Quanjun</creatorcontrib><description>Following language instructions to navigate in unseen environments is a challenging task for autonomous embodied agents. With strong representation capabilities, pretrained vision-and-language models are widely used in VLN. However, most of them are trained on web-crawled general-purpose datasets, which incurs a considerable domain gap when used for VLN tasks. To address the problem, we propose a novel and model-agnostic domain-aware prompt learning (DAP) framework. For equipping the pretrained models with specific object-level and scene-level cross-modal alignment in VLN tasks, DAP applies a low-cost prompt tuning paradigm to learn soft visual prompts for extracting in-domain image semantics. Specifically, we first generate a set of in-domain image-text pairs with the help of the CLIP model. Then we introduce soft visual prompts in the input space of the visual encoder in a pretrained model. DAP injects in-domain visual knowledge into the visual encoder of the pretrained model in an efficient way. Experimental results on both R2R and REVERIE show the superiority of DAP compared to existing state-of-the-art methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coders ; Learning ; Semantics ; Vision</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Hu, Yue</creatorcontrib><creatorcontrib>Wu, Wansen</creatorcontrib><creatorcontrib>Wang, Youkai</creatorcontrib><creatorcontrib>Xu, Kai</creatorcontrib><creatorcontrib>Yin, Quanjun</creatorcontrib><title>DAP: Domain-aware Prompt Learning for Vision-and-Language Navigation</title><title>arXiv.org</title><description>Following language instructions to navigate in unseen environments is a challenging task for autonomous embodied agents. With strong representation capabilities, pretrained vision-and-language models are widely used in VLN. However, most of them are trained on web-crawled general-purpose datasets, which incurs a considerable domain gap when used for VLN tasks. To address the problem, we propose a novel and model-agnostic domain-aware prompt learning (DAP) framework. For equipping the pretrained models with specific object-level and scene-level cross-modal alignment in VLN tasks, DAP applies a low-cost prompt tuning paradigm to learn soft visual prompts for extracting in-domain image semantics. Specifically, we first generate a set of in-domain image-text pairs with the help of the CLIP model. Then we introduce soft visual prompts in the input space of the visual encoder in a pretrained model. DAP injects in-domain visual knowledge into the visual encoder of the pretrained model in an efficient way. Experimental results on both R2R and REVERIE show the superiority of DAP compared to existing state-of-the-art methods.</description><subject>Coders</subject><subject>Learning</subject><subject>Semantics</subject><subject>Vision</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNir0KwjAYAIMgWLTvEHAOxC_2RzcxikORDuJaPjANKTapSauvbwYfwOng7mYkASE2rNwCLEgaQsc5h7yALBMJkfJQ76l0PRrL8INe0dq7fhhppdBbYzVtnad3E4yLg32wCq2eUCt6xbfROEa_IvMWn0GlPy7J-ny6HS9s8O41qTA2nZu8jamBcpfzHMqsEP9dX7llOck</recordid><startdate>20231228</startdate><enddate>20231228</enddate><creator>Liu, Ting</creator><creator>Hu, Yue</creator><creator>Wu, Wansen</creator><creator>Wang, Youkai</creator><creator>Xu, Kai</creator><creator>Yin, Quanjun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231228</creationdate><title>DAP: Domain-aware Prompt Learning for Vision-and-Language Navigation</title><author>Liu, Ting ; Hu, Yue ; Wu, Wansen ; Wang, Youkai ; Xu, Kai ; Yin, Quanjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28960628573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coders</topic><topic>Learning</topic><topic>Semantics</topic><topic>Vision</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Hu, Yue</creatorcontrib><creatorcontrib>Wu, Wansen</creatorcontrib><creatorcontrib>Wang, Youkai</creatorcontrib><creatorcontrib>Xu, Kai</creatorcontrib><creatorcontrib>Yin, Quanjun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ting</au><au>Hu, Yue</au><au>Wu, Wansen</au><au>Wang, Youkai</au><au>Xu, Kai</au><au>Yin, Quanjun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DAP: Domain-aware Prompt Learning for Vision-and-Language Navigation</atitle><jtitle>arXiv.org</jtitle><date>2023-12-28</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Following language instructions to navigate in unseen environments is a challenging task for autonomous embodied agents. With strong representation capabilities, pretrained vision-and-language models are widely used in VLN. However, most of them are trained on web-crawled general-purpose datasets, which incurs a considerable domain gap when used for VLN tasks. To address the problem, we propose a novel and model-agnostic domain-aware prompt learning (DAP) framework. For equipping the pretrained models with specific object-level and scene-level cross-modal alignment in VLN tasks, DAP applies a low-cost prompt tuning paradigm to learn soft visual prompts for extracting in-domain image semantics. Specifically, we first generate a set of in-domain image-text pairs with the help of the CLIP model. Then we introduce soft visual prompts in the input space of the visual encoder in a pretrained model. DAP injects in-domain visual knowledge into the visual encoder of the pretrained model in an efficient way. Experimental results on both R2R and REVERIE show the superiority of DAP compared to existing state-of-the-art methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2896062857
source Free E- Journals
subjects Coders
Learning
Semantics
Vision
title DAP: Domain-aware Prompt Learning for Vision-and-Language Navigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DAP:%20Domain-aware%20Prompt%20Learning%20for%20Vision-and-Language%20Navigation&rft.jtitle=arXiv.org&rft.au=Liu,%20Ting&rft.date=2023-12-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2896062857%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2896062857&rft_id=info:pmid/&rfr_iscdi=true