Group actions on monoidal triangulated categories and Balmer spectra

Let \(G\) be a group acting on a left or right rigid monoidal triangulated category \({\mathbf K}\) which has a Noetherian Balmer spectrum. We prove that the Balmer spectrum of the crossed product category of \({\mathbf K}\) by \(G\) is homeomorphic to the space of \(G\)-prime ideals of \({\mathbf K...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Huang, Hongdi, Vashaw, Kent B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Huang, Hongdi
Vashaw, Kent B
description Let \(G\) be a group acting on a left or right rigid monoidal triangulated category \({\mathbf K}\) which has a Noetherian Balmer spectrum. We prove that the Balmer spectrum of the crossed product category of \({\mathbf K}\) by \(G\) is homeomorphic to the space of \(G\)-prime ideals of \({\mathbf K}\), give a concrete description of this space, and classify the \(G\)-invariant thick ideals of \({\mathbf K}\). Under some additional technical conditions, we prove that the Balmer spectrum of the equivariantization of \({\mathbf K}\) by \(G\) is also homeomorphic to the space of \(G\)-prime ideals. Examples of stable categories of finite tensor categories and perfect derived categories of coherent sheaves on Noetherian schemes are used to illustrate the theory.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2896058970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2896058970</sourcerecordid><originalsourceid>FETCH-proquest_journals_28960589703</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC6EBP72_o_gHt5tLGkpHk1L7m_XXgANzOLmZXIlNaHojkqtRE58yilVFWtylJn4nIPlGbALlryDORhIk-2RwcxWPRDchhND93CgYI1DOh7OKGbTACeTRcD7sT6jY5N_vNW7G_X5_lRzIE-yXB8jZSCX9JLNW0ly6atpf7v-gJxWTsF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2896058970</pqid></control><display><type>article</type><title>Group actions on monoidal triangulated categories and Balmer spectra</title><source>Free E- Journals</source><creator>Huang, Hongdi ; Vashaw, Kent B</creator><creatorcontrib>Huang, Hongdi ; Vashaw, Kent B</creatorcontrib><description>Let \(G\) be a group acting on a left or right rigid monoidal triangulated category \({\mathbf K}\) which has a Noetherian Balmer spectrum. We prove that the Balmer spectrum of the crossed product category of \({\mathbf K}\) by \(G\) is homeomorphic to the space of \(G\)-prime ideals of \({\mathbf K}\), give a concrete description of this space, and classify the \(G\)-invariant thick ideals of \({\mathbf K}\). Under some additional technical conditions, we prove that the Balmer spectrum of the equivariantization of \({\mathbf K}\) by \(G\) is also homeomorphic to the space of \(G\)-prime ideals. Examples of stable categories of finite tensor categories and perfect derived categories of coherent sheaves on Noetherian schemes are used to illustrate the theory.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Categories ; Sheaves ; Tensors</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Huang, Hongdi</creatorcontrib><creatorcontrib>Vashaw, Kent B</creatorcontrib><title>Group actions on monoidal triangulated categories and Balmer spectra</title><title>arXiv.org</title><description>Let \(G\) be a group acting on a left or right rigid monoidal triangulated category \({\mathbf K}\) which has a Noetherian Balmer spectrum. We prove that the Balmer spectrum of the crossed product category of \({\mathbf K}\) by \(G\) is homeomorphic to the space of \(G\)-prime ideals of \({\mathbf K}\), give a concrete description of this space, and classify the \(G\)-invariant thick ideals of \({\mathbf K}\). Under some additional technical conditions, we prove that the Balmer spectrum of the equivariantization of \({\mathbf K}\) by \(G\) is also homeomorphic to the space of \(G\)-prime ideals. Examples of stable categories of finite tensor categories and perfect derived categories of coherent sheaves on Noetherian schemes are used to illustrate the theory.</description><subject>Categories</subject><subject>Sheaves</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC6EBP72_o_gHt5tLGkpHk1L7m_XXgANzOLmZXIlNaHojkqtRE58yilVFWtylJn4nIPlGbALlryDORhIk-2RwcxWPRDchhND93CgYI1DOh7OKGbTACeTRcD7sT6jY5N_vNW7G_X5_lRzIE-yXB8jZSCX9JLNW0ly6atpf7v-gJxWTsF</recordid><startdate>20240311</startdate><enddate>20240311</enddate><creator>Huang, Hongdi</creator><creator>Vashaw, Kent B</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240311</creationdate><title>Group actions on monoidal triangulated categories and Balmer spectra</title><author>Huang, Hongdi ; Vashaw, Kent B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28960589703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Categories</topic><topic>Sheaves</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hongdi</creatorcontrib><creatorcontrib>Vashaw, Kent B</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hongdi</au><au>Vashaw, Kent B</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Group actions on monoidal triangulated categories and Balmer spectra</atitle><jtitle>arXiv.org</jtitle><date>2024-03-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Let \(G\) be a group acting on a left or right rigid monoidal triangulated category \({\mathbf K}\) which has a Noetherian Balmer spectrum. We prove that the Balmer spectrum of the crossed product category of \({\mathbf K}\) by \(G\) is homeomorphic to the space of \(G\)-prime ideals of \({\mathbf K}\), give a concrete description of this space, and classify the \(G\)-invariant thick ideals of \({\mathbf K}\). Under some additional technical conditions, we prove that the Balmer spectrum of the equivariantization of \({\mathbf K}\) by \(G\) is also homeomorphic to the space of \(G\)-prime ideals. Examples of stable categories of finite tensor categories and perfect derived categories of coherent sheaves on Noetherian schemes are used to illustrate the theory.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2896058970
source Free E- Journals
subjects Categories
Sheaves
Tensors
title Group actions on monoidal triangulated categories and Balmer spectra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A55%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Group%20actions%20on%20monoidal%20triangulated%20categories%20and%20Balmer%20spectra&rft.jtitle=arXiv.org&rft.au=Huang,%20Hongdi&rft.date=2024-03-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2896058970%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2896058970&rft_id=info:pmid/&rfr_iscdi=true