Single-Frame-Based Deep View Synchronization for Unsynchronized Multicamera Surveillance
Multicamera surveillance has been an active research topic for understanding and modeling scenes. Compared to a single camera, multicameras provide larger field-of-view and more object cues, and the related applications are multiview counting, multiview tracking, 3-D pose estimation or 3-D reconstru...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2023-12, Vol.34 (12), p.10653-10667 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10667 |
---|---|
container_issue | 12 |
container_start_page | 10653 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 34 |
creator | Zhang, Qi Chan, Antoni B. |
description | Multicamera surveillance has been an active research topic for understanding and modeling scenes. Compared to a single camera, multicameras provide larger field-of-view and more object cues, and the related applications are multiview counting, multiview tracking, 3-D pose estimation or 3-D reconstruction, and so on. It is usually assumed that the cameras are all temporally synchronized when designing models for these multicamera-based tasks. However, this assumption is not always valid, especially for multicamera systems with network transmission delay and low frame rates due to limited network bandwidth, resulting in desynchronization of the captured frames across cameras. To handle the issue of unsynchronized multicameras, in this article, we propose a synchronization model that works in conjunction with existing deep neural network (DNN)-based multiview models, thus avoiding the redesign of the whole model. We consider two variants of the model, based on where in the pipeline the synchronization occurs, scene-level synchronization and camera-level synchronization. The view synchronization step and the task-specific view fusion and prediction step are unified in the same framework and trained in an end-to-end fashion. Our view synchronization models are applied to different DNNs-based multicamera vision tasks under the unsynchronized setting, including multiview counting and 3-D pose estimation, and achieve good performance compared to baselines. |
doi_str_mv | 10.1109/TNNLS.2022.3170642 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2896028195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9775149</ieee_id><sourcerecordid>2665561911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-92b9c544147e3baf58fea097ef6a9fc0e3c9834e4da7b9cb3006d4c32eb3cab13</originalsourceid><addsrcrecordid>eNpdkE1PAjEQhhujEYP8AU3MJl68LPZ7t0dFURPUA2i8Nd0yqyXLLrasRn-9RZCDvbSZPu9k5kHoiOA-IVidTx4eRuM-xZT2Gcmw5HQHHVAiaUpZnu9u39lLB_VCmOF4JBaSq33UYUJkkhN2gF7Grn6tIB16M4f00gSYJlcAi-TZwWcy_qrtm29q922WrqmTsvHJUx221Qjft9XS2Rj2Jhm3_gNcVZnawiHaK00VoLe5u-hpeD0Z3Kajx5u7wcUotUyQZapooazgnPAMWGFKkZdgsMqglEaVFgOzKmcc-NRkkSxY3GLKLaNQMGsKwrrobN134Zv3FsJSz12wsBoCmjZoKqUQkiiyQk__obOm9XWcTtNcSUxzokSk6JqyvgnBQ6kX3s2N_9IE65V6_ater9TrjfoYOtm0bos5TLeRP9EROF4DDgC23yrLBOGK_QBjyYiZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2896028195</pqid></control><display><type>article</type><title>Single-Frame-Based Deep View Synchronization for Unsynchronized Multicamera Surveillance</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Qi ; Chan, Antoni B.</creator><creatorcontrib>Zhang, Qi ; Chan, Antoni B.</creatorcontrib><description>Multicamera surveillance has been an active research topic for understanding and modeling scenes. Compared to a single camera, multicameras provide larger field-of-view and more object cues, and the related applications are multiview counting, multiview tracking, 3-D pose estimation or 3-D reconstruction, and so on. It is usually assumed that the cameras are all temporally synchronized when designing models for these multicamera-based tasks. However, this assumption is not always valid, especially for multicamera systems with network transmission delay and low frame rates due to limited network bandwidth, resulting in desynchronization of the captured frames across cameras. To handle the issue of unsynchronized multicameras, in this article, we propose a synchronization model that works in conjunction with existing deep neural network (DNN)-based multiview models, thus avoiding the redesign of the whole model. We consider two variants of the model, based on where in the pipeline the synchronization occurs, scene-level synchronization and camera-level synchronization. The view synchronization step and the task-specific view fusion and prediction step are unified in the same framework and trained in an end-to-end fashion. Our view synchronization models are applied to different DNNs-based multicamera vision tasks under the unsynchronized setting, including multiview counting and 3-D pose estimation, and achieve good performance compared to baselines.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2022.3170642</identifier><identifier>PMID: 35576413</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Cameras ; Computational modeling ; Crowd counting ; Crowdsourcing ; deep learning ; Field of view ; Geometry ; Image matching ; Neural networks ; Pose estimation ; Redesign ; Surveillance ; Synchronism ; Synchronization ; Task analysis</subject><ispartof>IEEE transaction on neural networks and learning systems, 2023-12, Vol.34 (12), p.10653-10667</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-92b9c544147e3baf58fea097ef6a9fc0e3c9834e4da7b9cb3006d4c32eb3cab13</citedby><cites>FETCH-LOGICAL-c351t-92b9c544147e3baf58fea097ef6a9fc0e3c9834e4da7b9cb3006d4c32eb3cab13</cites><orcidid>0000-0001-6212-9799 ; 0000-0002-2886-2513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9775149$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9775149$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35576413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Chan, Antoni B.</creatorcontrib><title>Single-Frame-Based Deep View Synchronization for Unsynchronized Multicamera Surveillance</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Multicamera surveillance has been an active research topic for understanding and modeling scenes. Compared to a single camera, multicameras provide larger field-of-view and more object cues, and the related applications are multiview counting, multiview tracking, 3-D pose estimation or 3-D reconstruction, and so on. It is usually assumed that the cameras are all temporally synchronized when designing models for these multicamera-based tasks. However, this assumption is not always valid, especially for multicamera systems with network transmission delay and low frame rates due to limited network bandwidth, resulting in desynchronization of the captured frames across cameras. To handle the issue of unsynchronized multicameras, in this article, we propose a synchronization model that works in conjunction with existing deep neural network (DNN)-based multiview models, thus avoiding the redesign of the whole model. We consider two variants of the model, based on where in the pipeline the synchronization occurs, scene-level synchronization and camera-level synchronization. The view synchronization step and the task-specific view fusion and prediction step are unified in the same framework and trained in an end-to-end fashion. Our view synchronization models are applied to different DNNs-based multicamera vision tasks under the unsynchronized setting, including multiview counting and 3-D pose estimation, and achieve good performance compared to baselines.</description><subject>Artificial neural networks</subject><subject>Cameras</subject><subject>Computational modeling</subject><subject>Crowd counting</subject><subject>Crowdsourcing</subject><subject>deep learning</subject><subject>Field of view</subject><subject>Geometry</subject><subject>Image matching</subject><subject>Neural networks</subject><subject>Pose estimation</subject><subject>Redesign</subject><subject>Surveillance</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Task analysis</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1PAjEQhhujEYP8AU3MJl68LPZ7t0dFURPUA2i8Nd0yqyXLLrasRn-9RZCDvbSZPu9k5kHoiOA-IVidTx4eRuM-xZT2Gcmw5HQHHVAiaUpZnu9u39lLB_VCmOF4JBaSq33UYUJkkhN2gF7Grn6tIB16M4f00gSYJlcAi-TZwWcy_qrtm29q922WrqmTsvHJUx221Qjft9XS2Rj2Jhm3_gNcVZnawiHaK00VoLe5u-hpeD0Z3Kajx5u7wcUotUyQZapooazgnPAMWGFKkZdgsMqglEaVFgOzKmcc-NRkkSxY3GLKLaNQMGsKwrrobN134Zv3FsJSz12wsBoCmjZoKqUQkiiyQk__obOm9XWcTtNcSUxzokSk6JqyvgnBQ6kX3s2N_9IE65V6_ater9TrjfoYOtm0bos5TLeRP9EROF4DDgC23yrLBOGK_QBjyYiZ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Zhang, Qi</creator><creator>Chan, Antoni B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6212-9799</orcidid><orcidid>https://orcid.org/0000-0002-2886-2513</orcidid></search><sort><creationdate>20231201</creationdate><title>Single-Frame-Based Deep View Synchronization for Unsynchronized Multicamera Surveillance</title><author>Zhang, Qi ; Chan, Antoni B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-92b9c544147e3baf58fea097ef6a9fc0e3c9834e4da7b9cb3006d4c32eb3cab13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Cameras</topic><topic>Computational modeling</topic><topic>Crowd counting</topic><topic>Crowdsourcing</topic><topic>deep learning</topic><topic>Field of view</topic><topic>Geometry</topic><topic>Image matching</topic><topic>Neural networks</topic><topic>Pose estimation</topic><topic>Redesign</topic><topic>Surveillance</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Chan, Antoni B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Qi</au><au>Chan, Antoni B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Frame-Based Deep View Synchronization for Unsynchronized Multicamera Surveillance</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>34</volume><issue>12</issue><spage>10653</spage><epage>10667</epage><pages>10653-10667</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Multicamera surveillance has been an active research topic for understanding and modeling scenes. Compared to a single camera, multicameras provide larger field-of-view and more object cues, and the related applications are multiview counting, multiview tracking, 3-D pose estimation or 3-D reconstruction, and so on. It is usually assumed that the cameras are all temporally synchronized when designing models for these multicamera-based tasks. However, this assumption is not always valid, especially for multicamera systems with network transmission delay and low frame rates due to limited network bandwidth, resulting in desynchronization of the captured frames across cameras. To handle the issue of unsynchronized multicameras, in this article, we propose a synchronization model that works in conjunction with existing deep neural network (DNN)-based multiview models, thus avoiding the redesign of the whole model. We consider two variants of the model, based on where in the pipeline the synchronization occurs, scene-level synchronization and camera-level synchronization. The view synchronization step and the task-specific view fusion and prediction step are unified in the same framework and trained in an end-to-end fashion. Our view synchronization models are applied to different DNNs-based multicamera vision tasks under the unsynchronized setting, including multiview counting and 3-D pose estimation, and achieve good performance compared to baselines.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35576413</pmid><doi>10.1109/TNNLS.2022.3170642</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6212-9799</orcidid><orcidid>https://orcid.org/0000-0002-2886-2513</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2023-12, Vol.34 (12), p.10653-10667 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_journals_2896028195 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Cameras Computational modeling Crowd counting Crowdsourcing deep learning Field of view Geometry Image matching Neural networks Pose estimation Redesign Surveillance Synchronism Synchronization Task analysis |
title | Single-Frame-Based Deep View Synchronization for Unsynchronized Multicamera Surveillance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T12%3A05%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Frame-Based%20Deep%20View%20Synchronization%20for%20Unsynchronized%20Multicamera%20Surveillance&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Zhang,%20Qi&rft.date=2023-12-01&rft.volume=34&rft.issue=12&rft.spage=10653&rft.epage=10667&rft.pages=10653-10667&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2022.3170642&rft_dat=%3Cproquest_RIE%3E2665561911%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2896028195&rft_id=info:pmid/35576413&rft_ieee_id=9775149&rfr_iscdi=true |