Design of Constant-Voltage and Constant-Current Output Modes of Double-Sided LCC Inductive Power Transfer System for Variable Coupling Conditions
It is crucial for inductive power transfer (IPT) systems to achieve load-independent outputs. However, the complex charging environment brings a series of challenges to the parameter design of the IPT system. For example, in the case of wireless charging of electric vehicles, there are situations su...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2024-01, Vol.39 (1), p.1676-1689 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1689 |
---|---|
container_issue | 1 |
container_start_page | 1676 |
container_title | IEEE transactions on power electronics |
container_volume | 39 |
creator | Cai, Jin Wu, Xusheng Sun, Pan Deng, Qijun Sun, Jun Zhou, Hang |
description | It is crucial for inductive power transfer (IPT) systems to achieve load-independent outputs. However, the complex charging environment brings a series of challenges to the parameter design of the IPT system. For example, in the case of wireless charging of electric vehicles, there are situations such as large load variation range and inaccurate coupling coil alignment, which requires the IPT system to maintain constant current (CC) and constant voltage (CV) outputs under variable coupling conditions. Therefore, this article proposes a parameter design method for the double-sided LCC compensation network, which can decouple the CC and CV outputs from the mutual inductance parameter, and by changing the operating frequency, the CC output and CV output of the IPT system can be mutually switching, and with zero phase angle (ZPA) input at the same time. In this article, the CC and CV output modes of the double-sided LCC compensation network are designed based on the two-port network, and then the ZPA input condition is deduced through the mutual inductance model. To maximize the system efficiency, an improved genetic algorithm is proposed to solve the system CC and CV output operating frequencies. Finally, a 3.3 kW prototype and simulation model are established to verify the correctness of the theoretical analysis. |
doi_str_mv | 10.1109/TPEL.2022.3226756 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2896027691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9976287</ieee_id><sourcerecordid>2896027691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-2cdacb0254a57465a117239017bdb76cb72c5414bafa49707558bb1ea86eb5b23</originalsourceid><addsrcrecordid>eNpFkF1LwzAUhoMoOKc_QLwJeN2ZpE3TXEqdHzDZYHO3JWlPR8ZMZpIq_gz_sS0benUOh_c5LzwIXVMyoZTIu9ViOpswwtgkZSwXPD9BIyozmhBKxCkakaLgSSFleo4uQtgSQjNO6Aj9PEAwG4tdi0tnQ1Q2Jmu3i2oDWNnm_1h23oONeN7FfRfxq2sgDNSD6_QOkqVpoMGzssQvtunqaD4BL9wXeLzyyoa2X5bfIcI7bp3Ha-WN6rH-fbffGbsZehoTTd92ic5atQtwdZxj9PY4XZXPyWz-9FLez5I65TImrG5UrQnjmeIiy7miVLBUEip0o0Vea8FqntFMq1ZlUhDBeaE1BVXkoLlm6RjdHv7uvfvoIMRq6zpv-8qKFTInTOSS9il6SNXeheChrfbevCv_XVFSDearwXw1mK-O5nvm5sAYAPjLSylyVoj0Fy8mgOk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2896027691</pqid></control><display><type>article</type><title>Design of Constant-Voltage and Constant-Current Output Modes of Double-Sided LCC Inductive Power Transfer System for Variable Coupling Conditions</title><source>IEEE Electronic Library (IEL)</source><creator>Cai, Jin ; Wu, Xusheng ; Sun, Pan ; Deng, Qijun ; Sun, Jun ; Zhou, Hang</creator><creatorcontrib>Cai, Jin ; Wu, Xusheng ; Sun, Pan ; Deng, Qijun ; Sun, Jun ; Zhou, Hang</creatorcontrib><description>It is crucial for inductive power transfer (IPT) systems to achieve load-independent outputs. However, the complex charging environment brings a series of challenges to the parameter design of the IPT system. For example, in the case of wireless charging of electric vehicles, there are situations such as large load variation range and inaccurate coupling coil alignment, which requires the IPT system to maintain constant current (CC) and constant voltage (CV) outputs under variable coupling conditions. Therefore, this article proposes a parameter design method for the double-sided LCC compensation network, which can decouple the CC and CV outputs from the mutual inductance parameter, and by changing the operating frequency, the CC output and CV output of the IPT system can be mutually switching, and with zero phase angle (ZPA) input at the same time. In this article, the CC and CV output modes of the double-sided LCC compensation network are designed based on the two-port network, and then the ZPA input condition is deduced through the mutual inductance model. To maximize the system efficiency, an improved genetic algorithm is proposed to solve the system CC and CV output operating frequencies. Finally, a 3.3 kW prototype and simulation model are established to verify the correctness of the theoretical analysis.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2022.3226756</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coils ; Compensation ; Constant current (CC) output ; constant voltage (CV) output ; Coupling ; Couplings ; Current distribution ; decoupling ; Design parameters ; double-sided LCC ; Electric potential ; Electric vehicle charging ; Electric vehicles ; Energy exchange ; genetic algorithm (GA) ; Genetic algorithms ; Inductance ; Inductive charging ; inductive power transfer (IPT) ; Inverters ; Load fluctuation ; Load management ; Resistance ; RLC circuits ; Simulation models ; Time-frequency analysis ; Voltage ; Voltage control ; Wireless power transfer ; Wireless power transmission ; zero phase angle (ZPA) ; Zero voltage switching</subject><ispartof>IEEE transactions on power electronics, 2024-01, Vol.39 (1), p.1676-1689</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-2cdacb0254a57465a117239017bdb76cb72c5414bafa49707558bb1ea86eb5b23</citedby><cites>FETCH-LOGICAL-c359t-2cdacb0254a57465a117239017bdb76cb72c5414bafa49707558bb1ea86eb5b23</cites><orcidid>0000-0001-6768-5663 ; 0000-0003-0336-1760 ; 0000-0002-6096-7278 ; 0000-0003-4883-7419 ; 0000-0003-0643-2333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9976287$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9976287$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cai, Jin</creatorcontrib><creatorcontrib>Wu, Xusheng</creatorcontrib><creatorcontrib>Sun, Pan</creatorcontrib><creatorcontrib>Deng, Qijun</creatorcontrib><creatorcontrib>Sun, Jun</creatorcontrib><creatorcontrib>Zhou, Hang</creatorcontrib><title>Design of Constant-Voltage and Constant-Current Output Modes of Double-Sided LCC Inductive Power Transfer System for Variable Coupling Conditions</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>It is crucial for inductive power transfer (IPT) systems to achieve load-independent outputs. However, the complex charging environment brings a series of challenges to the parameter design of the IPT system. For example, in the case of wireless charging of electric vehicles, there are situations such as large load variation range and inaccurate coupling coil alignment, which requires the IPT system to maintain constant current (CC) and constant voltage (CV) outputs under variable coupling conditions. Therefore, this article proposes a parameter design method for the double-sided LCC compensation network, which can decouple the CC and CV outputs from the mutual inductance parameter, and by changing the operating frequency, the CC output and CV output of the IPT system can be mutually switching, and with zero phase angle (ZPA) input at the same time. In this article, the CC and CV output modes of the double-sided LCC compensation network are designed based on the two-port network, and then the ZPA input condition is deduced through the mutual inductance model. To maximize the system efficiency, an improved genetic algorithm is proposed to solve the system CC and CV output operating frequencies. Finally, a 3.3 kW prototype and simulation model are established to verify the correctness of the theoretical analysis.</description><subject>Coils</subject><subject>Compensation</subject><subject>Constant current (CC) output</subject><subject>constant voltage (CV) output</subject><subject>Coupling</subject><subject>Couplings</subject><subject>Current distribution</subject><subject>decoupling</subject><subject>Design parameters</subject><subject>double-sided LCC</subject><subject>Electric potential</subject><subject>Electric vehicle charging</subject><subject>Electric vehicles</subject><subject>Energy exchange</subject><subject>genetic algorithm (GA)</subject><subject>Genetic algorithms</subject><subject>Inductance</subject><subject>Inductive charging</subject><subject>inductive power transfer (IPT)</subject><subject>Inverters</subject><subject>Load fluctuation</subject><subject>Load management</subject><subject>Resistance</subject><subject>RLC circuits</subject><subject>Simulation models</subject><subject>Time-frequency analysis</subject><subject>Voltage</subject><subject>Voltage control</subject><subject>Wireless power transfer</subject><subject>Wireless power transmission</subject><subject>zero phase angle (ZPA)</subject><subject>Zero voltage switching</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkF1LwzAUhoMoOKc_QLwJeN2ZpE3TXEqdHzDZYHO3JWlPR8ZMZpIq_gz_sS0benUOh_c5LzwIXVMyoZTIu9ViOpswwtgkZSwXPD9BIyozmhBKxCkakaLgSSFleo4uQtgSQjNO6Aj9PEAwG4tdi0tnQ1Q2Jmu3i2oDWNnm_1h23oONeN7FfRfxq2sgDNSD6_QOkqVpoMGzssQvtunqaD4BL9wXeLzyyoa2X5bfIcI7bp3Ha-WN6rH-fbffGbsZehoTTd92ic5atQtwdZxj9PY4XZXPyWz-9FLez5I65TImrG5UrQnjmeIiy7miVLBUEip0o0Vea8FqntFMq1ZlUhDBeaE1BVXkoLlm6RjdHv7uvfvoIMRq6zpv-8qKFTInTOSS9il6SNXeheChrfbevCv_XVFSDearwXw1mK-O5nvm5sAYAPjLSylyVoj0Fy8mgOk</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Cai, Jin</creator><creator>Wu, Xusheng</creator><creator>Sun, Pan</creator><creator>Deng, Qijun</creator><creator>Sun, Jun</creator><creator>Zhou, Hang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6768-5663</orcidid><orcidid>https://orcid.org/0000-0003-0336-1760</orcidid><orcidid>https://orcid.org/0000-0002-6096-7278</orcidid><orcidid>https://orcid.org/0000-0003-4883-7419</orcidid><orcidid>https://orcid.org/0000-0003-0643-2333</orcidid></search><sort><creationdate>202401</creationdate><title>Design of Constant-Voltage and Constant-Current Output Modes of Double-Sided LCC Inductive Power Transfer System for Variable Coupling Conditions</title><author>Cai, Jin ; Wu, Xusheng ; Sun, Pan ; Deng, Qijun ; Sun, Jun ; Zhou, Hang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-2cdacb0254a57465a117239017bdb76cb72c5414bafa49707558bb1ea86eb5b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coils</topic><topic>Compensation</topic><topic>Constant current (CC) output</topic><topic>constant voltage (CV) output</topic><topic>Coupling</topic><topic>Couplings</topic><topic>Current distribution</topic><topic>decoupling</topic><topic>Design parameters</topic><topic>double-sided LCC</topic><topic>Electric potential</topic><topic>Electric vehicle charging</topic><topic>Electric vehicles</topic><topic>Energy exchange</topic><topic>genetic algorithm (GA)</topic><topic>Genetic algorithms</topic><topic>Inductance</topic><topic>Inductive charging</topic><topic>inductive power transfer (IPT)</topic><topic>Inverters</topic><topic>Load fluctuation</topic><topic>Load management</topic><topic>Resistance</topic><topic>RLC circuits</topic><topic>Simulation models</topic><topic>Time-frequency analysis</topic><topic>Voltage</topic><topic>Voltage control</topic><topic>Wireless power transfer</topic><topic>Wireless power transmission</topic><topic>zero phase angle (ZPA)</topic><topic>Zero voltage switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Jin</creatorcontrib><creatorcontrib>Wu, Xusheng</creatorcontrib><creatorcontrib>Sun, Pan</creatorcontrib><creatorcontrib>Deng, Qijun</creatorcontrib><creatorcontrib>Sun, Jun</creatorcontrib><creatorcontrib>Zhou, Hang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cai, Jin</au><au>Wu, Xusheng</au><au>Sun, Pan</au><au>Deng, Qijun</au><au>Sun, Jun</au><au>Zhou, Hang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Constant-Voltage and Constant-Current Output Modes of Double-Sided LCC Inductive Power Transfer System for Variable Coupling Conditions</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2024-01</date><risdate>2024</risdate><volume>39</volume><issue>1</issue><spage>1676</spage><epage>1689</epage><pages>1676-1689</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>It is crucial for inductive power transfer (IPT) systems to achieve load-independent outputs. However, the complex charging environment brings a series of challenges to the parameter design of the IPT system. For example, in the case of wireless charging of electric vehicles, there are situations such as large load variation range and inaccurate coupling coil alignment, which requires the IPT system to maintain constant current (CC) and constant voltage (CV) outputs under variable coupling conditions. Therefore, this article proposes a parameter design method for the double-sided LCC compensation network, which can decouple the CC and CV outputs from the mutual inductance parameter, and by changing the operating frequency, the CC output and CV output of the IPT system can be mutually switching, and with zero phase angle (ZPA) input at the same time. In this article, the CC and CV output modes of the double-sided LCC compensation network are designed based on the two-port network, and then the ZPA input condition is deduced through the mutual inductance model. To maximize the system efficiency, an improved genetic algorithm is proposed to solve the system CC and CV output operating frequencies. Finally, a 3.3 kW prototype and simulation model are established to verify the correctness of the theoretical analysis.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2022.3226756</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6768-5663</orcidid><orcidid>https://orcid.org/0000-0003-0336-1760</orcidid><orcidid>https://orcid.org/0000-0002-6096-7278</orcidid><orcidid>https://orcid.org/0000-0003-4883-7419</orcidid><orcidid>https://orcid.org/0000-0003-0643-2333</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2024-01, Vol.39 (1), p.1676-1689 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_proquest_journals_2896027691 |
source | IEEE Electronic Library (IEL) |
subjects | Coils Compensation Constant current (CC) output constant voltage (CV) output Coupling Couplings Current distribution decoupling Design parameters double-sided LCC Electric potential Electric vehicle charging Electric vehicles Energy exchange genetic algorithm (GA) Genetic algorithms Inductance Inductive charging inductive power transfer (IPT) Inverters Load fluctuation Load management Resistance RLC circuits Simulation models Time-frequency analysis Voltage Voltage control Wireless power transfer Wireless power transmission zero phase angle (ZPA) Zero voltage switching |
title | Design of Constant-Voltage and Constant-Current Output Modes of Double-Sided LCC Inductive Power Transfer System for Variable Coupling Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Constant-Voltage%20and%20Constant-Current%20Output%20Modes%20of%20Double-Sided%20LCC%20Inductive%20Power%20Transfer%20System%20for%20Variable%20Coupling%20Conditions&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Cai,%20Jin&rft.date=2024-01&rft.volume=39&rft.issue=1&rft.spage=1676&rft.epage=1689&rft.pages=1676-1689&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2022.3226756&rft_dat=%3Cproquest_RIE%3E2896027691%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2896027691&rft_id=info:pmid/&rft_ieee_id=9976287&rfr_iscdi=true |