Design of Constant-Voltage and Constant-Current Output Modes of Double-Sided LCC Inductive Power Transfer System for Variable Coupling Conditions

It is crucial for inductive power transfer (IPT) systems to achieve load-independent outputs. However, the complex charging environment brings a series of challenges to the parameter design of the IPT system. For example, in the case of wireless charging of electric vehicles, there are situations su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2024-01, Vol.39 (1), p.1676-1689
Hauptverfasser: Cai, Jin, Wu, Xusheng, Sun, Pan, Deng, Qijun, Sun, Jun, Zhou, Hang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1689
container_issue 1
container_start_page 1676
container_title IEEE transactions on power electronics
container_volume 39
creator Cai, Jin
Wu, Xusheng
Sun, Pan
Deng, Qijun
Sun, Jun
Zhou, Hang
description It is crucial for inductive power transfer (IPT) systems to achieve load-independent outputs. However, the complex charging environment brings a series of challenges to the parameter design of the IPT system. For example, in the case of wireless charging of electric vehicles, there are situations such as large load variation range and inaccurate coupling coil alignment, which requires the IPT system to maintain constant current (CC) and constant voltage (CV) outputs under variable coupling conditions. Therefore, this article proposes a parameter design method for the double-sided LCC compensation network, which can decouple the CC and CV outputs from the mutual inductance parameter, and by changing the operating frequency, the CC output and CV output of the IPT system can be mutually switching, and with zero phase angle (ZPA) input at the same time. In this article, the CC and CV output modes of the double-sided LCC compensation network are designed based on the two-port network, and then the ZPA input condition is deduced through the mutual inductance model. To maximize the system efficiency, an improved genetic algorithm is proposed to solve the system CC and CV output operating frequencies. Finally, a 3.3 kW prototype and simulation model are established to verify the correctness of the theoretical analysis.
doi_str_mv 10.1109/TPEL.2022.3226756
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2896027691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9976287</ieee_id><sourcerecordid>2896027691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-2cdacb0254a57465a117239017bdb76cb72c5414bafa49707558bb1ea86eb5b23</originalsourceid><addsrcrecordid>eNpFkF1LwzAUhoMoOKc_QLwJeN2ZpE3TXEqdHzDZYHO3JWlPR8ZMZpIq_gz_sS0benUOh_c5LzwIXVMyoZTIu9ViOpswwtgkZSwXPD9BIyozmhBKxCkakaLgSSFleo4uQtgSQjNO6Aj9PEAwG4tdi0tnQ1Q2Jmu3i2oDWNnm_1h23oONeN7FfRfxq2sgDNSD6_QOkqVpoMGzssQvtunqaD4BL9wXeLzyyoa2X5bfIcI7bp3Ha-WN6rH-fbffGbsZehoTTd92ic5atQtwdZxj9PY4XZXPyWz-9FLez5I65TImrG5UrQnjmeIiy7miVLBUEip0o0Vea8FqntFMq1ZlUhDBeaE1BVXkoLlm6RjdHv7uvfvoIMRq6zpv-8qKFTInTOSS9il6SNXeheChrfbevCv_XVFSDearwXw1mK-O5nvm5sAYAPjLSylyVoj0Fy8mgOk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2896027691</pqid></control><display><type>article</type><title>Design of Constant-Voltage and Constant-Current Output Modes of Double-Sided LCC Inductive Power Transfer System for Variable Coupling Conditions</title><source>IEEE Electronic Library (IEL)</source><creator>Cai, Jin ; Wu, Xusheng ; Sun, Pan ; Deng, Qijun ; Sun, Jun ; Zhou, Hang</creator><creatorcontrib>Cai, Jin ; Wu, Xusheng ; Sun, Pan ; Deng, Qijun ; Sun, Jun ; Zhou, Hang</creatorcontrib><description>It is crucial for inductive power transfer (IPT) systems to achieve load-independent outputs. However, the complex charging environment brings a series of challenges to the parameter design of the IPT system. For example, in the case of wireless charging of electric vehicles, there are situations such as large load variation range and inaccurate coupling coil alignment, which requires the IPT system to maintain constant current (CC) and constant voltage (CV) outputs under variable coupling conditions. Therefore, this article proposes a parameter design method for the double-sided LCC compensation network, which can decouple the CC and CV outputs from the mutual inductance parameter, and by changing the operating frequency, the CC output and CV output of the IPT system can be mutually switching, and with zero phase angle (ZPA) input at the same time. In this article, the CC and CV output modes of the double-sided LCC compensation network are designed based on the two-port network, and then the ZPA input condition is deduced through the mutual inductance model. To maximize the system efficiency, an improved genetic algorithm is proposed to solve the system CC and CV output operating frequencies. Finally, a 3.3 kW prototype and simulation model are established to verify the correctness of the theoretical analysis.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2022.3226756</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coils ; Compensation ; Constant current (CC) output ; constant voltage (CV) output ; Coupling ; Couplings ; Current distribution ; decoupling ; Design parameters ; double-sided LCC ; Electric potential ; Electric vehicle charging ; Electric vehicles ; Energy exchange ; genetic algorithm (GA) ; Genetic algorithms ; Inductance ; Inductive charging ; inductive power transfer (IPT) ; Inverters ; Load fluctuation ; Load management ; Resistance ; RLC circuits ; Simulation models ; Time-frequency analysis ; Voltage ; Voltage control ; Wireless power transfer ; Wireless power transmission ; zero phase angle (ZPA) ; Zero voltage switching</subject><ispartof>IEEE transactions on power electronics, 2024-01, Vol.39 (1), p.1676-1689</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-2cdacb0254a57465a117239017bdb76cb72c5414bafa49707558bb1ea86eb5b23</citedby><cites>FETCH-LOGICAL-c359t-2cdacb0254a57465a117239017bdb76cb72c5414bafa49707558bb1ea86eb5b23</cites><orcidid>0000-0001-6768-5663 ; 0000-0003-0336-1760 ; 0000-0002-6096-7278 ; 0000-0003-4883-7419 ; 0000-0003-0643-2333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9976287$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9976287$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cai, Jin</creatorcontrib><creatorcontrib>Wu, Xusheng</creatorcontrib><creatorcontrib>Sun, Pan</creatorcontrib><creatorcontrib>Deng, Qijun</creatorcontrib><creatorcontrib>Sun, Jun</creatorcontrib><creatorcontrib>Zhou, Hang</creatorcontrib><title>Design of Constant-Voltage and Constant-Current Output Modes of Double-Sided LCC Inductive Power Transfer System for Variable Coupling Conditions</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>It is crucial for inductive power transfer (IPT) systems to achieve load-independent outputs. However, the complex charging environment brings a series of challenges to the parameter design of the IPT system. For example, in the case of wireless charging of electric vehicles, there are situations such as large load variation range and inaccurate coupling coil alignment, which requires the IPT system to maintain constant current (CC) and constant voltage (CV) outputs under variable coupling conditions. Therefore, this article proposes a parameter design method for the double-sided LCC compensation network, which can decouple the CC and CV outputs from the mutual inductance parameter, and by changing the operating frequency, the CC output and CV output of the IPT system can be mutually switching, and with zero phase angle (ZPA) input at the same time. In this article, the CC and CV output modes of the double-sided LCC compensation network are designed based on the two-port network, and then the ZPA input condition is deduced through the mutual inductance model. To maximize the system efficiency, an improved genetic algorithm is proposed to solve the system CC and CV output operating frequencies. Finally, a 3.3 kW prototype and simulation model are established to verify the correctness of the theoretical analysis.</description><subject>Coils</subject><subject>Compensation</subject><subject>Constant current (CC) output</subject><subject>constant voltage (CV) output</subject><subject>Coupling</subject><subject>Couplings</subject><subject>Current distribution</subject><subject>decoupling</subject><subject>Design parameters</subject><subject>double-sided LCC</subject><subject>Electric potential</subject><subject>Electric vehicle charging</subject><subject>Electric vehicles</subject><subject>Energy exchange</subject><subject>genetic algorithm (GA)</subject><subject>Genetic algorithms</subject><subject>Inductance</subject><subject>Inductive charging</subject><subject>inductive power transfer (IPT)</subject><subject>Inverters</subject><subject>Load fluctuation</subject><subject>Load management</subject><subject>Resistance</subject><subject>RLC circuits</subject><subject>Simulation models</subject><subject>Time-frequency analysis</subject><subject>Voltage</subject><subject>Voltage control</subject><subject>Wireless power transfer</subject><subject>Wireless power transmission</subject><subject>zero phase angle (ZPA)</subject><subject>Zero voltage switching</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkF1LwzAUhoMoOKc_QLwJeN2ZpE3TXEqdHzDZYHO3JWlPR8ZMZpIq_gz_sS0benUOh_c5LzwIXVMyoZTIu9ViOpswwtgkZSwXPD9BIyozmhBKxCkakaLgSSFleo4uQtgSQjNO6Aj9PEAwG4tdi0tnQ1Q2Jmu3i2oDWNnm_1h23oONeN7FfRfxq2sgDNSD6_QOkqVpoMGzssQvtunqaD4BL9wXeLzyyoa2X5bfIcI7bp3Ha-WN6rH-fbffGbsZehoTTd92ic5atQtwdZxj9PY4XZXPyWz-9FLez5I65TImrG5UrQnjmeIiy7miVLBUEip0o0Vea8FqntFMq1ZlUhDBeaE1BVXkoLlm6RjdHv7uvfvoIMRq6zpv-8qKFTInTOSS9il6SNXeheChrfbevCv_XVFSDearwXw1mK-O5nvm5sAYAPjLSylyVoj0Fy8mgOk</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Cai, Jin</creator><creator>Wu, Xusheng</creator><creator>Sun, Pan</creator><creator>Deng, Qijun</creator><creator>Sun, Jun</creator><creator>Zhou, Hang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6768-5663</orcidid><orcidid>https://orcid.org/0000-0003-0336-1760</orcidid><orcidid>https://orcid.org/0000-0002-6096-7278</orcidid><orcidid>https://orcid.org/0000-0003-4883-7419</orcidid><orcidid>https://orcid.org/0000-0003-0643-2333</orcidid></search><sort><creationdate>202401</creationdate><title>Design of Constant-Voltage and Constant-Current Output Modes of Double-Sided LCC Inductive Power Transfer System for Variable Coupling Conditions</title><author>Cai, Jin ; Wu, Xusheng ; Sun, Pan ; Deng, Qijun ; Sun, Jun ; Zhou, Hang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-2cdacb0254a57465a117239017bdb76cb72c5414bafa49707558bb1ea86eb5b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coils</topic><topic>Compensation</topic><topic>Constant current (CC) output</topic><topic>constant voltage (CV) output</topic><topic>Coupling</topic><topic>Couplings</topic><topic>Current distribution</topic><topic>decoupling</topic><topic>Design parameters</topic><topic>double-sided LCC</topic><topic>Electric potential</topic><topic>Electric vehicle charging</topic><topic>Electric vehicles</topic><topic>Energy exchange</topic><topic>genetic algorithm (GA)</topic><topic>Genetic algorithms</topic><topic>Inductance</topic><topic>Inductive charging</topic><topic>inductive power transfer (IPT)</topic><topic>Inverters</topic><topic>Load fluctuation</topic><topic>Load management</topic><topic>Resistance</topic><topic>RLC circuits</topic><topic>Simulation models</topic><topic>Time-frequency analysis</topic><topic>Voltage</topic><topic>Voltage control</topic><topic>Wireless power transfer</topic><topic>Wireless power transmission</topic><topic>zero phase angle (ZPA)</topic><topic>Zero voltage switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Jin</creatorcontrib><creatorcontrib>Wu, Xusheng</creatorcontrib><creatorcontrib>Sun, Pan</creatorcontrib><creatorcontrib>Deng, Qijun</creatorcontrib><creatorcontrib>Sun, Jun</creatorcontrib><creatorcontrib>Zhou, Hang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cai, Jin</au><au>Wu, Xusheng</au><au>Sun, Pan</au><au>Deng, Qijun</au><au>Sun, Jun</au><au>Zhou, Hang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Constant-Voltage and Constant-Current Output Modes of Double-Sided LCC Inductive Power Transfer System for Variable Coupling Conditions</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2024-01</date><risdate>2024</risdate><volume>39</volume><issue>1</issue><spage>1676</spage><epage>1689</epage><pages>1676-1689</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>It is crucial for inductive power transfer (IPT) systems to achieve load-independent outputs. However, the complex charging environment brings a series of challenges to the parameter design of the IPT system. For example, in the case of wireless charging of electric vehicles, there are situations such as large load variation range and inaccurate coupling coil alignment, which requires the IPT system to maintain constant current (CC) and constant voltage (CV) outputs under variable coupling conditions. Therefore, this article proposes a parameter design method for the double-sided LCC compensation network, which can decouple the CC and CV outputs from the mutual inductance parameter, and by changing the operating frequency, the CC output and CV output of the IPT system can be mutually switching, and with zero phase angle (ZPA) input at the same time. In this article, the CC and CV output modes of the double-sided LCC compensation network are designed based on the two-port network, and then the ZPA input condition is deduced through the mutual inductance model. To maximize the system efficiency, an improved genetic algorithm is proposed to solve the system CC and CV output operating frequencies. Finally, a 3.3 kW prototype and simulation model are established to verify the correctness of the theoretical analysis.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2022.3226756</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6768-5663</orcidid><orcidid>https://orcid.org/0000-0003-0336-1760</orcidid><orcidid>https://orcid.org/0000-0002-6096-7278</orcidid><orcidid>https://orcid.org/0000-0003-4883-7419</orcidid><orcidid>https://orcid.org/0000-0003-0643-2333</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2024-01, Vol.39 (1), p.1676-1689
issn 0885-8993
1941-0107
language eng
recordid cdi_proquest_journals_2896027691
source IEEE Electronic Library (IEL)
subjects Coils
Compensation
Constant current (CC) output
constant voltage (CV) output
Coupling
Couplings
Current distribution
decoupling
Design parameters
double-sided LCC
Electric potential
Electric vehicle charging
Electric vehicles
Energy exchange
genetic algorithm (GA)
Genetic algorithms
Inductance
Inductive charging
inductive power transfer (IPT)
Inverters
Load fluctuation
Load management
Resistance
RLC circuits
Simulation models
Time-frequency analysis
Voltage
Voltage control
Wireless power transfer
Wireless power transmission
zero phase angle (ZPA)
Zero voltage switching
title Design of Constant-Voltage and Constant-Current Output Modes of Double-Sided LCC Inductive Power Transfer System for Variable Coupling Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Constant-Voltage%20and%20Constant-Current%20Output%20Modes%20of%20Double-Sided%20LCC%20Inductive%20Power%20Transfer%20System%20for%20Variable%20Coupling%20Conditions&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Cai,%20Jin&rft.date=2024-01&rft.volume=39&rft.issue=1&rft.spage=1676&rft.epage=1689&rft.pages=1676-1689&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2022.3226756&rft_dat=%3Cproquest_RIE%3E2896027691%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2896027691&rft_id=info:pmid/&rft_ieee_id=9976287&rfr_iscdi=true