Phase evolution during conventional and reactive flash sintering of (Mg,Ni,Co,Cu,Zn)O via in situ X‐ray diffraction
Reactive flash sintering (RFS) enables the simultaneous synthesis and sintering of ceramics and has been shown to affect the reaction pathway of different materials. Herein, in situ synchrotron X‐ray diffraction (XRD) is used to investigate the (Mg,Ni,Co,Cu,Zn)O entropy‐stabilized oxide formation du...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2024-02, Vol.107 (2), p.785-796 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 796 |
---|---|
container_issue | 2 |
container_start_page | 785 |
container_title | Journal of the American Ceramic Society |
container_volume | 107 |
creator | Yoon, Bola Campos, João V Lavagnini, Isabela R Avila, Viviana Gardner, James M Ghose, Sanjit K. Jesus, Lílian M. |
description | Reactive flash sintering (RFS) enables the simultaneous synthesis and sintering of ceramics and has been shown to affect the reaction pathway of different materials. Herein, in situ synchrotron X‐ray diffraction (XRD) is used to investigate the (Mg,Ni,Co,Cu,Zn)O entropy‐stabilized oxide formation during: (i) conventional heating and (ii) RFS under current rate‐controlled mode. The same reaction pathway is verified in both instances: the starting rock‐salt (RS), spinel (Co3O4), tenorite (CuO), and wurtzite (ZnO) phases transform into a single RS phase with a (1 1 1) to (2 0 0) intensity ratio of 0.67, consistent with a random distribution of the cations into the structure. Pt lattice peak shift from the XRD patterns is used as standard to monitor the sample surface temperature, revealing a strong endothermic reaction during the RS single‐phase formation (Pt peaks shift toward higher angles while increasing sample temperature/current density). In RFS, the single‐phase RS structure is formed in just 60 s at a furnace temperature of 600°C and a current rate of 220 mA mm−2/min. Therefore, RFS greatly accelerates the synthesis of (Mg,Ni,Co,Cu,Zn)O, however, it does not play a role in the reaction pathway for this material formation. |
doi_str_mv | 10.1111/jace.19503 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2895892499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895892499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2603-d79045d16b46471de679acd244921978190b2c69d76187464d643c1bbbf5b1163</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgCs7pxU8Q8KKyzrxZmzbHUeY_pvOgIF5K2qRbRk1m0lZ28yP4Gf0kdptnc3nJyy8P5EHoFMgQunO1FIUaAo_IaA_1IIogoBzYPuoRQmgQJ5QcoiPvl90VeBL2UPO0EF5h1dqqqbU1WDZOmzkurGmV2WxEhYWR2ClR1LpVuKyEX2CvTa220pb4_GE-eNSD1A7SZvBmLma41QJr06m6wa8_X99OrLHUZek2IdYco4NSVF6d_M0-ermePKe3wXR2c5eOp0FBGRkFMuYkjCSwPGRhDFKxmItC0jDkFHicACc5LRiXMYMk7oxk4aiAPM_LKAdgoz462-WunP1olK-zpW1c9yWf0YRHCach55263KnCWe-dKrOV0-_CrTMg2abWbFNrtq21w7DDn7pS639kdj9OJ7s3v9FzefI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895892499</pqid></control><display><type>article</type><title>Phase evolution during conventional and reactive flash sintering of (Mg,Ni,Co,Cu,Zn)O via in situ X‐ray diffraction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yoon, Bola ; Campos, João V ; Lavagnini, Isabela R ; Avila, Viviana ; Gardner, James M ; Ghose, Sanjit K. ; Jesus, Lílian M.</creator><creatorcontrib>Yoon, Bola ; Campos, João V ; Lavagnini, Isabela R ; Avila, Viviana ; Gardner, James M ; Ghose, Sanjit K. ; Jesus, Lílian M.</creatorcontrib><description>Reactive flash sintering (RFS) enables the simultaneous synthesis and sintering of ceramics and has been shown to affect the reaction pathway of different materials. Herein, in situ synchrotron X‐ray diffraction (XRD) is used to investigate the (Mg,Ni,Co,Cu,Zn)O entropy‐stabilized oxide formation during: (i) conventional heating and (ii) RFS under current rate‐controlled mode. The same reaction pathway is verified in both instances: the starting rock‐salt (RS), spinel (Co3O4), tenorite (CuO), and wurtzite (ZnO) phases transform into a single RS phase with a (1 1 1) to (2 0 0) intensity ratio of 0.67, consistent with a random distribution of the cations into the structure. Pt lattice peak shift from the XRD patterns is used as standard to monitor the sample surface temperature, revealing a strong endothermic reaction during the RS single‐phase formation (Pt peaks shift toward higher angles while increasing sample temperature/current density). In RFS, the single‐phase RS structure is formed in just 60 s at a furnace temperature of 600°C and a current rate of 220 mA mm−2/min. Therefore, RFS greatly accelerates the synthesis of (Mg,Ni,Co,Cu,Zn)O, however, it does not play a role in the reaction pathway for this material formation.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.19503</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Cobalt oxides ; Copper ; electric‐field assisted processing ; Endothermic reactions ; high‐entropy oxides ; in situ thermal analysis ; Magnesium ; Nickel ; phase transformations ; Platinum ; Resistance sintering ; Sintering ; synchrotron radiation ; Synchrotrons ; Synthesis ; Wurtzite ; X-ray diffraction ; Zinc oxide</subject><ispartof>Journal of the American Ceramic Society, 2024-02, Vol.107 (2), p.785-796</ispartof><rights>2023 The American Ceramic Society.</rights><rights>2024 The American Ceramic Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2603-d79045d16b46471de679acd244921978190b2c69d76187464d643c1bbbf5b1163</cites><orcidid>0000-0003-3476-1644 ; 0000-0003-0245-8560 ; 0000-0002-6265-5542 ; 0000-0002-0683-3826 ; 0000-0002-6087-5373 ; 0000-0001-7703-6149 ; 0000-0002-4782-4969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.19503$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.19503$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Yoon, Bola</creatorcontrib><creatorcontrib>Campos, João V</creatorcontrib><creatorcontrib>Lavagnini, Isabela R</creatorcontrib><creatorcontrib>Avila, Viviana</creatorcontrib><creatorcontrib>Gardner, James M</creatorcontrib><creatorcontrib>Ghose, Sanjit K.</creatorcontrib><creatorcontrib>Jesus, Lílian M.</creatorcontrib><title>Phase evolution during conventional and reactive flash sintering of (Mg,Ni,Co,Cu,Zn)O via in situ X‐ray diffraction</title><title>Journal of the American Ceramic Society</title><description>Reactive flash sintering (RFS) enables the simultaneous synthesis and sintering of ceramics and has been shown to affect the reaction pathway of different materials. Herein, in situ synchrotron X‐ray diffraction (XRD) is used to investigate the (Mg,Ni,Co,Cu,Zn)O entropy‐stabilized oxide formation during: (i) conventional heating and (ii) RFS under current rate‐controlled mode. The same reaction pathway is verified in both instances: the starting rock‐salt (RS), spinel (Co3O4), tenorite (CuO), and wurtzite (ZnO) phases transform into a single RS phase with a (1 1 1) to (2 0 0) intensity ratio of 0.67, consistent with a random distribution of the cations into the structure. Pt lattice peak shift from the XRD patterns is used as standard to monitor the sample surface temperature, revealing a strong endothermic reaction during the RS single‐phase formation (Pt peaks shift toward higher angles while increasing sample temperature/current density). In RFS, the single‐phase RS structure is formed in just 60 s at a furnace temperature of 600°C and a current rate of 220 mA mm−2/min. Therefore, RFS greatly accelerates the synthesis of (Mg,Ni,Co,Cu,Zn)O, however, it does not play a role in the reaction pathway for this material formation.</description><subject>Cobalt oxides</subject><subject>Copper</subject><subject>electric‐field assisted processing</subject><subject>Endothermic reactions</subject><subject>high‐entropy oxides</subject><subject>in situ thermal analysis</subject><subject>Magnesium</subject><subject>Nickel</subject><subject>phase transformations</subject><subject>Platinum</subject><subject>Resistance sintering</subject><subject>Sintering</subject><subject>synchrotron radiation</subject><subject>Synchrotrons</subject><subject>Synthesis</subject><subject>Wurtzite</subject><subject>X-ray diffraction</subject><subject>Zinc oxide</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgCs7pxU8Q8KKyzrxZmzbHUeY_pvOgIF5K2qRbRk1m0lZ28yP4Gf0kdptnc3nJyy8P5EHoFMgQunO1FIUaAo_IaA_1IIogoBzYPuoRQmgQJ5QcoiPvl90VeBL2UPO0EF5h1dqqqbU1WDZOmzkurGmV2WxEhYWR2ClR1LpVuKyEX2CvTa220pb4_GE-eNSD1A7SZvBmLma41QJr06m6wa8_X99OrLHUZek2IdYco4NSVF6d_M0-ermePKe3wXR2c5eOp0FBGRkFMuYkjCSwPGRhDFKxmItC0jDkFHicACc5LRiXMYMk7oxk4aiAPM_LKAdgoz462-WunP1olK-zpW1c9yWf0YRHCach55263KnCWe-dKrOV0-_CrTMg2abWbFNrtq21w7DDn7pS639kdj9OJ7s3v9FzefI</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Yoon, Bola</creator><creator>Campos, João V</creator><creator>Lavagnini, Isabela R</creator><creator>Avila, Viviana</creator><creator>Gardner, James M</creator><creator>Ghose, Sanjit K.</creator><creator>Jesus, Lílian M.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3476-1644</orcidid><orcidid>https://orcid.org/0000-0003-0245-8560</orcidid><orcidid>https://orcid.org/0000-0002-6265-5542</orcidid><orcidid>https://orcid.org/0000-0002-0683-3826</orcidid><orcidid>https://orcid.org/0000-0002-6087-5373</orcidid><orcidid>https://orcid.org/0000-0001-7703-6149</orcidid><orcidid>https://orcid.org/0000-0002-4782-4969</orcidid></search><sort><creationdate>202402</creationdate><title>Phase evolution during conventional and reactive flash sintering of (Mg,Ni,Co,Cu,Zn)O via in situ X‐ray diffraction</title><author>Yoon, Bola ; Campos, João V ; Lavagnini, Isabela R ; Avila, Viviana ; Gardner, James M ; Ghose, Sanjit K. ; Jesus, Lílian M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2603-d79045d16b46471de679acd244921978190b2c69d76187464d643c1bbbf5b1163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cobalt oxides</topic><topic>Copper</topic><topic>electric‐field assisted processing</topic><topic>Endothermic reactions</topic><topic>high‐entropy oxides</topic><topic>in situ thermal analysis</topic><topic>Magnesium</topic><topic>Nickel</topic><topic>phase transformations</topic><topic>Platinum</topic><topic>Resistance sintering</topic><topic>Sintering</topic><topic>synchrotron radiation</topic><topic>Synchrotrons</topic><topic>Synthesis</topic><topic>Wurtzite</topic><topic>X-ray diffraction</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Bola</creatorcontrib><creatorcontrib>Campos, João V</creatorcontrib><creatorcontrib>Lavagnini, Isabela R</creatorcontrib><creatorcontrib>Avila, Viviana</creatorcontrib><creatorcontrib>Gardner, James M</creatorcontrib><creatorcontrib>Ghose, Sanjit K.</creatorcontrib><creatorcontrib>Jesus, Lílian M.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoon, Bola</au><au>Campos, João V</au><au>Lavagnini, Isabela R</au><au>Avila, Viviana</au><au>Gardner, James M</au><au>Ghose, Sanjit K.</au><au>Jesus, Lílian M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase evolution during conventional and reactive flash sintering of (Mg,Ni,Co,Cu,Zn)O via in situ X‐ray diffraction</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2024-02</date><risdate>2024</risdate><volume>107</volume><issue>2</issue><spage>785</spage><epage>796</epage><pages>785-796</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Reactive flash sintering (RFS) enables the simultaneous synthesis and sintering of ceramics and has been shown to affect the reaction pathway of different materials. Herein, in situ synchrotron X‐ray diffraction (XRD) is used to investigate the (Mg,Ni,Co,Cu,Zn)O entropy‐stabilized oxide formation during: (i) conventional heating and (ii) RFS under current rate‐controlled mode. The same reaction pathway is verified in both instances: the starting rock‐salt (RS), spinel (Co3O4), tenorite (CuO), and wurtzite (ZnO) phases transform into a single RS phase with a (1 1 1) to (2 0 0) intensity ratio of 0.67, consistent with a random distribution of the cations into the structure. Pt lattice peak shift from the XRD patterns is used as standard to monitor the sample surface temperature, revealing a strong endothermic reaction during the RS single‐phase formation (Pt peaks shift toward higher angles while increasing sample temperature/current density). In RFS, the single‐phase RS structure is formed in just 60 s at a furnace temperature of 600°C and a current rate of 220 mA mm−2/min. Therefore, RFS greatly accelerates the synthesis of (Mg,Ni,Co,Cu,Zn)O, however, it does not play a role in the reaction pathway for this material formation.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.19503</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3476-1644</orcidid><orcidid>https://orcid.org/0000-0003-0245-8560</orcidid><orcidid>https://orcid.org/0000-0002-6265-5542</orcidid><orcidid>https://orcid.org/0000-0002-0683-3826</orcidid><orcidid>https://orcid.org/0000-0002-6087-5373</orcidid><orcidid>https://orcid.org/0000-0001-7703-6149</orcidid><orcidid>https://orcid.org/0000-0002-4782-4969</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2024-02, Vol.107 (2), p.785-796 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_2895892499 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Cobalt oxides Copper electric‐field assisted processing Endothermic reactions high‐entropy oxides in situ thermal analysis Magnesium Nickel phase transformations Platinum Resistance sintering Sintering synchrotron radiation Synchrotrons Synthesis Wurtzite X-ray diffraction Zinc oxide |
title | Phase evolution during conventional and reactive flash sintering of (Mg,Ni,Co,Cu,Zn)O via in situ X‐ray diffraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A28%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20evolution%20during%20conventional%20and%20reactive%20flash%20sintering%20of%20(Mg,Ni,Co,Cu,Zn)O%20via%20in%20situ%20X%E2%80%90ray%20diffraction&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Yoon,%20Bola&rft.date=2024-02&rft.volume=107&rft.issue=2&rft.spage=785&rft.epage=796&rft.pages=785-796&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.19503&rft_dat=%3Cproquest_cross%3E2895892499%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895892499&rft_id=info:pmid/&rfr_iscdi=true |