Improved Open World Object Detection Using Class-Wise Feature Space Learning
Open-world object detection is a challenging set of tasks in the realm of computer vision. In these tasks, the object detection model processes the input image or video and undergoes inference to identify objects or features present in the image or video. The main objective of the model is to identi...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023, Vol.11, p.131221-131236 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 131236 |
---|---|
container_issue | |
container_start_page | 131221 |
container_title | IEEE access |
container_volume | 11 |
creator | Iqbal, Muhammad Ali Yoon, Yeo Chan Khan, Muhammad U. S. Kim, Soo Kyun |
description | Open-world object detection is a challenging set of tasks in the realm of computer vision. In these tasks, the object detection model processes the input image or video and undergoes inference to identify objects or features present in the image or video. The main objective of the model is to identify the seen and unseen classes rather than identifying only the classes that that were introduced to it during training. The challenging task is to create instance-level true bounding boxes tightly around the true objects and classify and localize them with their true class labels, without missing any of the true object or assigning false positive labels to them. Motivated by the pressing need to advance the capabilities of open-world object detection we present a novel clustering technique called margin-based latent space clustering and deployed it in the classification head of the Faster RCNN. Furthermore, we propose a novel loss function called margin-based loss coupled with regularization parameters aiming to optimize the outlier identification. The proposed method is also capable of incremental learning. Overall, all four incremental tasks are assessed by employing benchmark evaluation metrics. The proposed method outperforms the existing state-of-the-art method, with significant improvements in mean average precision (mAP). We improved the mAP by 4.49% on task 1, 3.71% on task 2, 6.19% on task 3 and 2.81% on task 4. We also reduced the 'Wilderness Impact and Absolute Open-Set Error' metrics (For assessing the false positive detection, both metrics are employed), on every task. |
doi_str_mv | 10.1109/ACCESS.2023.3335602 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2895873286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10325500</ieee_id><doaj_id>oai_doaj_org_article_0a88e3b9a2a249beafc9b120c9439138</doaj_id><sourcerecordid>2895873286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-3e4c06a2d6f9255d8b27e5def3e05f8963ba5fb46c2ddad10eecebb7b86916e03</originalsourceid><addsrcrecordid>eNpNUU1rAjEQXUoLldZf0B4Wel6bZExMjrLVVljwYMVjSLKzsqK7NlkL_feNXSnOZYbhvTcfL0meKBlRStTrNM9nq9WIEQYjAOCCsJtkwKhQGXAQt1f1fTIMYUdiyNjik0FSLA5H335jmS6P2KSb1u9jaXfouvQNu5jqtknXoW62ab43IWSbOmA6R9OdPKaro3GYFmh8ExGPyV1l9gGHl_yQrOezz_wjK5bvi3xaZA646jLAsSPCsFJUinFeSssmyEusAAmvpBJgDa_sWDhWlqakBNGhtRMrhaICCTwki163bM1OH319MP5Ht6bWf43Wb7XxXe32qImREsEqwwwbK4umcspSRpwag6Igo9ZLrxXf8HXC0Olde_JNXF8zqbicAJMioqBHOd-G4LH6n0qJPrugexf02QV9cSGynntWjYhXDIhXEwK_coyC3Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895873286</pqid></control><display><type>article</type><title>Improved Open World Object Detection Using Class-Wise Feature Space Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Iqbal, Muhammad Ali ; Yoon, Yeo Chan ; Khan, Muhammad U. S. ; Kim, Soo Kyun</creator><creatorcontrib>Iqbal, Muhammad Ali ; Yoon, Yeo Chan ; Khan, Muhammad U. S. ; Kim, Soo Kyun</creatorcontrib><description>Open-world object detection is a challenging set of tasks in the realm of computer vision. In these tasks, the object detection model processes the input image or video and undergoes inference to identify objects or features present in the image or video. The main objective of the model is to identify the seen and unseen classes rather than identifying only the classes that that were introduced to it during training. The challenging task is to create instance-level true bounding boxes tightly around the true objects and classify and localize them with their true class labels, without missing any of the true object or assigning false positive labels to them. Motivated by the pressing need to advance the capabilities of open-world object detection we present a novel clustering technique called margin-based latent space clustering and deployed it in the classification head of the Faster RCNN. Furthermore, we propose a novel loss function called margin-based loss coupled with regularization parameters aiming to optimize the outlier identification. The proposed method is also capable of incremental learning. Overall, all four incremental tasks are assessed by employing benchmark evaluation metrics. The proposed method outperforms the existing state-of-the-art method, with significant improvements in mean average precision (mAP). We improved the mAP by 4.49% on task 1, 3.71% on task 2, 6.19% on task 3 and 2.81% on task 4. We also reduced the 'Wilderness Impact and Absolute Open-Set Error' metrics (For assessing the false positive detection, both metrics are employed), on every task.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3335602</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Clustering ; Computer vision ; Convolutional neural networks ; Data analysis ; Labels ; Learning ; Measurement ; Object detection ; Object recognition ; Outliers (statistics) ; Parameter identification ; region convolutional neural network ; region of interest ; Regional proposal network ; Regularization ; Reliability ; Task analysis ; Training ; Uncertainty ; Wilderness</subject><ispartof>IEEE access, 2023, Vol.11, p.131221-131236</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-3e4c06a2d6f9255d8b27e5def3e05f8963ba5fb46c2ddad10eecebb7b86916e03</cites><orcidid>0000-0002-5573-8964 ; 0009-0001-5152-0255 ; 0000-0002-7299-621X ; 0000-0001-6071-8231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10325500$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Iqbal, Muhammad Ali</creatorcontrib><creatorcontrib>Yoon, Yeo Chan</creatorcontrib><creatorcontrib>Khan, Muhammad U. S.</creatorcontrib><creatorcontrib>Kim, Soo Kyun</creatorcontrib><title>Improved Open World Object Detection Using Class-Wise Feature Space Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>Open-world object detection is a challenging set of tasks in the realm of computer vision. In these tasks, the object detection model processes the input image or video and undergoes inference to identify objects or features present in the image or video. The main objective of the model is to identify the seen and unseen classes rather than identifying only the classes that that were introduced to it during training. The challenging task is to create instance-level true bounding boxes tightly around the true objects and classify and localize them with their true class labels, without missing any of the true object or assigning false positive labels to them. Motivated by the pressing need to advance the capabilities of open-world object detection we present a novel clustering technique called margin-based latent space clustering and deployed it in the classification head of the Faster RCNN. Furthermore, we propose a novel loss function called margin-based loss coupled with regularization parameters aiming to optimize the outlier identification. The proposed method is also capable of incremental learning. Overall, all four incremental tasks are assessed by employing benchmark evaluation metrics. The proposed method outperforms the existing state-of-the-art method, with significant improvements in mean average precision (mAP). We improved the mAP by 4.49% on task 1, 3.71% on task 2, 6.19% on task 3 and 2.81% on task 4. We also reduced the 'Wilderness Impact and Absolute Open-Set Error' metrics (For assessing the false positive detection, both metrics are employed), on every task.</description><subject>Clustering</subject><subject>Computer vision</subject><subject>Convolutional neural networks</subject><subject>Data analysis</subject><subject>Labels</subject><subject>Learning</subject><subject>Measurement</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Outliers (statistics)</subject><subject>Parameter identification</subject><subject>region convolutional neural network</subject><subject>region of interest</subject><subject>Regional proposal network</subject><subject>Regularization</subject><subject>Reliability</subject><subject>Task analysis</subject><subject>Training</subject><subject>Uncertainty</subject><subject>Wilderness</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rAjEQXUoLldZf0B4Wel6bZExMjrLVVljwYMVjSLKzsqK7NlkL_feNXSnOZYbhvTcfL0meKBlRStTrNM9nq9WIEQYjAOCCsJtkwKhQGXAQt1f1fTIMYUdiyNjik0FSLA5H335jmS6P2KSb1u9jaXfouvQNu5jqtknXoW62ab43IWSbOmA6R9OdPKaro3GYFmh8ExGPyV1l9gGHl_yQrOezz_wjK5bvi3xaZA646jLAsSPCsFJUinFeSssmyEusAAmvpBJgDa_sWDhWlqakBNGhtRMrhaICCTwki163bM1OH319MP5Ht6bWf43Wb7XxXe32qImREsEqwwwbK4umcspSRpwag6Igo9ZLrxXf8HXC0Olde_JNXF8zqbicAJMioqBHOd-G4LH6n0qJPrugexf02QV9cSGynntWjYhXDIhXEwK_coyC3Q</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Iqbal, Muhammad Ali</creator><creator>Yoon, Yeo Chan</creator><creator>Khan, Muhammad U. S.</creator><creator>Kim, Soo Kyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5573-8964</orcidid><orcidid>https://orcid.org/0009-0001-5152-0255</orcidid><orcidid>https://orcid.org/0000-0002-7299-621X</orcidid><orcidid>https://orcid.org/0000-0001-6071-8231</orcidid></search><sort><creationdate>2023</creationdate><title>Improved Open World Object Detection Using Class-Wise Feature Space Learning</title><author>Iqbal, Muhammad Ali ; Yoon, Yeo Chan ; Khan, Muhammad U. S. ; Kim, Soo Kyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-3e4c06a2d6f9255d8b27e5def3e05f8963ba5fb46c2ddad10eecebb7b86916e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Clustering</topic><topic>Computer vision</topic><topic>Convolutional neural networks</topic><topic>Data analysis</topic><topic>Labels</topic><topic>Learning</topic><topic>Measurement</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Outliers (statistics)</topic><topic>Parameter identification</topic><topic>region convolutional neural network</topic><topic>region of interest</topic><topic>Regional proposal network</topic><topic>Regularization</topic><topic>Reliability</topic><topic>Task analysis</topic><topic>Training</topic><topic>Uncertainty</topic><topic>Wilderness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iqbal, Muhammad Ali</creatorcontrib><creatorcontrib>Yoon, Yeo Chan</creatorcontrib><creatorcontrib>Khan, Muhammad U. S.</creatorcontrib><creatorcontrib>Kim, Soo Kyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iqbal, Muhammad Ali</au><au>Yoon, Yeo Chan</au><au>Khan, Muhammad U. S.</au><au>Kim, Soo Kyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Open World Object Detection Using Class-Wise Feature Space Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>131221</spage><epage>131236</epage><pages>131221-131236</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Open-world object detection is a challenging set of tasks in the realm of computer vision. In these tasks, the object detection model processes the input image or video and undergoes inference to identify objects or features present in the image or video. The main objective of the model is to identify the seen and unseen classes rather than identifying only the classes that that were introduced to it during training. The challenging task is to create instance-level true bounding boxes tightly around the true objects and classify and localize them with their true class labels, without missing any of the true object or assigning false positive labels to them. Motivated by the pressing need to advance the capabilities of open-world object detection we present a novel clustering technique called margin-based latent space clustering and deployed it in the classification head of the Faster RCNN. Furthermore, we propose a novel loss function called margin-based loss coupled with regularization parameters aiming to optimize the outlier identification. The proposed method is also capable of incremental learning. Overall, all four incremental tasks are assessed by employing benchmark evaluation metrics. The proposed method outperforms the existing state-of-the-art method, with significant improvements in mean average precision (mAP). We improved the mAP by 4.49% on task 1, 3.71% on task 2, 6.19% on task 3 and 2.81% on task 4. We also reduced the 'Wilderness Impact and Absolute Open-Set Error' metrics (For assessing the false positive detection, both metrics are employed), on every task.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3335602</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5573-8964</orcidid><orcidid>https://orcid.org/0009-0001-5152-0255</orcidid><orcidid>https://orcid.org/0000-0002-7299-621X</orcidid><orcidid>https://orcid.org/0000-0001-6071-8231</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023, Vol.11, p.131221-131236 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2895873286 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Clustering Computer vision Convolutional neural networks Data analysis Labels Learning Measurement Object detection Object recognition Outliers (statistics) Parameter identification region convolutional neural network region of interest Regional proposal network Regularization Reliability Task analysis Training Uncertainty Wilderness |
title | Improved Open World Object Detection Using Class-Wise Feature Space Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Open%20World%20Object%20Detection%20Using%20Class-Wise%20Feature%20Space%20Learning&rft.jtitle=IEEE%20access&rft.au=Iqbal,%20Muhammad%20Ali&rft.date=2023&rft.volume=11&rft.spage=131221&rft.epage=131236&rft.pages=131221-131236&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3335602&rft_dat=%3Cproquest_cross%3E2895873286%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895873286&rft_id=info:pmid/&rft_ieee_id=10325500&rft_doaj_id=oai_doaj_org_article_0a88e3b9a2a249beafc9b120c9439138&rfr_iscdi=true |