Analysis of Influence Factors of Guide Vanes Torque in Variable Geometry Turbine Adjusting Mechanism

More and more attention has been paid to research on variable geometry turbine engines with the increasing improvement of performance requirements for military turbines. Due to the fixed working angle of the inlet guide vane, the performance of a conventional fixed geometry turbine is optimal only f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.131726-131748
Hauptverfasser: Zhong, Yan, Chen, Liangyu, Zhao, Lei, Wang, Lei, Yan, Zhuo, Bai, Haoxi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 131748
container_issue
container_start_page 131726
container_title IEEE access
container_volume 11
creator Zhong, Yan
Chen, Liangyu
Zhao, Lei
Wang, Lei
Yan, Zhuo
Bai, Haoxi
description More and more attention has been paid to research on variable geometry turbine engines with the increasing improvement of performance requirements for military turbines. Due to the fixed working angle of the inlet guide vane, the performance of a conventional fixed geometry turbine is optimal only for turbines near the design point. To match the aircraft's starting, climbing, cruising, deceleration, landing and other working states, it is necessary to change the turbine speed. This will not only reduce the performance of the turbine but also increase the fuel loss. The variable geometry turbine is a perfect solution to this problem. It is not necessary to change the speed of the turbine, but only the working angle of the inlet rotating guide vane of the turbine. The variable geometry turbine can be matched to each state of the aircraft's entire voyage. The turbine guide vane can be adjusted by 7° to bring about a 10% change in the flow rate of the entire machine. With constant turbine inlet temperature, the fuel loss can be effectively reduced. The rotating guide vane is impacted by the high-temperature and high-pressure gas and cold air in the inner culvert. Hot and cold air produce two types of aerodynamic torque on the rotating guide vane. There is also a friction torque on the rotating shaft of the guide vane. Therefore, the rotating guide vanes of variable geometry turbines are subjected to three types of torques. The main objective of this paper is to study three factors influencing the guide vane torque in the main flow path. The three influencing factors are the turbulence intensity of the gas, the flow ratio of cold gas to hot gas and the location distribution of the gas film holes on the guide vane. In this paper, CFD temperature-fluid-solid coupling algorithm combined with UDF program is applied to solve the torque of guide vane shaft at three influencing factors. The results show that the three factors, turbulence intensity, flow ratio and air film hole distribution, can have a significant effect on the guide vane torque. This is of great significance for the research and design of variable geometry turbines.
doi_str_mv 10.1109/ACCESS.2023.3335814
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2895873098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10325511</ieee_id><doaj_id>oai_doaj_org_article_dd487b21f4704eef854474ec8588c2d2</doaj_id><sourcerecordid>2895873098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-c80457d2f32e7e63caad9573fa121aac2f73ef4f89b8e04dc1cd2b705bc849353</originalsourceid><addsrcrecordid>eNpNUU1PAyEU3BhNNNpfoAcSz618FvbYNFqbaDy0eiUsPJRmuyjsHvrvxa4xvguPyZt5DFNV1wTPCMH13WK5vN9sZhRTNmOMCUX4SXVBybyeMsHmp__682qS8w6XUgUS8qJyi860hxwyih6tO98O0FlAD8b2MR3B1RAcoDfTQUbbmL4GQKEr9xRM0wJaQdxDnw5oO6QmdIAWbjfkPnTv6Bnsh-lC3l9VZ960GSa_52X1-nC_XT5On15W6-XiaWqZqPupVZgL6ahnFCTMmTXGlUcybwglxljqJQPPvaobBZg7S6yjjcSisYrXxd9ltR51XTQ7_ZnC3qSDjiboIxDTuzapD7YF7RxXsqHEc4k5gFeCc8nBKqGUpY4WrdtR6zPF4jn3eheHVD4ra6pqoSTDtSpTbJyyKeacwP9tJVj_pKPHdPRPOvo3ncK6GVkBAP4xGBWCEPYNLRyLeA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895873098</pqid></control><display><type>article</type><title>Analysis of Influence Factors of Guide Vanes Torque in Variable Geometry Turbine Adjusting Mechanism</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhong, Yan ; Chen, Liangyu ; Zhao, Lei ; Wang, Lei ; Yan, Zhuo ; Bai, Haoxi</creator><creatorcontrib>Zhong, Yan ; Chen, Liangyu ; Zhao, Lei ; Wang, Lei ; Yan, Zhuo ; Bai, Haoxi</creatorcontrib><description>More and more attention has been paid to research on variable geometry turbine engines with the increasing improvement of performance requirements for military turbines. Due to the fixed working angle of the inlet guide vane, the performance of a conventional fixed geometry turbine is optimal only for turbines near the design point. To match the aircraft's starting, climbing, cruising, deceleration, landing and other working states, it is necessary to change the turbine speed. This will not only reduce the performance of the turbine but also increase the fuel loss. The variable geometry turbine is a perfect solution to this problem. It is not necessary to change the speed of the turbine, but only the working angle of the inlet rotating guide vane of the turbine. The variable geometry turbine can be matched to each state of the aircraft's entire voyage. The turbine guide vane can be adjusted by 7° to bring about a 10% change in the flow rate of the entire machine. With constant turbine inlet temperature, the fuel loss can be effectively reduced. The rotating guide vane is impacted by the high-temperature and high-pressure gas and cold air in the inner culvert. Hot and cold air produce two types of aerodynamic torque on the rotating guide vane. There is also a friction torque on the rotating shaft of the guide vane. Therefore, the rotating guide vanes of variable geometry turbines are subjected to three types of torques. The main objective of this paper is to study three factors influencing the guide vane torque in the main flow path. The three influencing factors are the turbulence intensity of the gas, the flow ratio of cold gas to hot gas and the location distribution of the gas film holes on the guide vane. In this paper, CFD temperature-fluid-solid coupling algorithm combined with UDF program is applied to solve the torque of guide vane shaft at three influencing factors. The results show that the three factors, turbulence intensity, flow ratio and air film hole distribution, can have a significant effect on the guide vane torque. This is of great significance for the research and design of variable geometry turbines.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3335814</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aerodynamics ; air film hole distribution ; Aircraft ; Algorithms ; Atmospheric modeling ; Blades ; Cold flow ; Cold gas ; Computational modeling ; Deceleration ; deflection angle ; Engines ; flow ratio ; Flowmeters ; Fluid dynamics ; Fluid flow ; Fuels ; Gas turbine engines ; Geometric modeling ; Geometry ; Guide vanes ; High temperature ; Hole distribution ; Hydraulic turbines ; Inlet temperature ; rotating guide vane torque ; Rotating shafts ; temperature-fluid-solid coupling algorithm ; Torque ; Turbines ; Turbulence intensity ; Turbulent flow ; UDF program ; variable geometry turbine</subject><ispartof>IEEE access, 2023, Vol.11, p.131726-131748</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-c80457d2f32e7e63caad9573fa121aac2f73ef4f89b8e04dc1cd2b705bc849353</cites><orcidid>0000-0003-0619-6625 ; 0000-0003-2081-0206 ; 0009-0006-0393-8995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10325511$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Zhong, Yan</creatorcontrib><creatorcontrib>Chen, Liangyu</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Yan, Zhuo</creatorcontrib><creatorcontrib>Bai, Haoxi</creatorcontrib><title>Analysis of Influence Factors of Guide Vanes Torque in Variable Geometry Turbine Adjusting Mechanism</title><title>IEEE access</title><addtitle>Access</addtitle><description>More and more attention has been paid to research on variable geometry turbine engines with the increasing improvement of performance requirements for military turbines. Due to the fixed working angle of the inlet guide vane, the performance of a conventional fixed geometry turbine is optimal only for turbines near the design point. To match the aircraft's starting, climbing, cruising, deceleration, landing and other working states, it is necessary to change the turbine speed. This will not only reduce the performance of the turbine but also increase the fuel loss. The variable geometry turbine is a perfect solution to this problem. It is not necessary to change the speed of the turbine, but only the working angle of the inlet rotating guide vane of the turbine. The variable geometry turbine can be matched to each state of the aircraft's entire voyage. The turbine guide vane can be adjusted by 7° to bring about a 10% change in the flow rate of the entire machine. With constant turbine inlet temperature, the fuel loss can be effectively reduced. The rotating guide vane is impacted by the high-temperature and high-pressure gas and cold air in the inner culvert. Hot and cold air produce two types of aerodynamic torque on the rotating guide vane. There is also a friction torque on the rotating shaft of the guide vane. Therefore, the rotating guide vanes of variable geometry turbines are subjected to three types of torques. The main objective of this paper is to study three factors influencing the guide vane torque in the main flow path. The three influencing factors are the turbulence intensity of the gas, the flow ratio of cold gas to hot gas and the location distribution of the gas film holes on the guide vane. In this paper, CFD temperature-fluid-solid coupling algorithm combined with UDF program is applied to solve the torque of guide vane shaft at three influencing factors. The results show that the three factors, turbulence intensity, flow ratio and air film hole distribution, can have a significant effect on the guide vane torque. This is of great significance for the research and design of variable geometry turbines.</description><subject>Aerodynamics</subject><subject>air film hole distribution</subject><subject>Aircraft</subject><subject>Algorithms</subject><subject>Atmospheric modeling</subject><subject>Blades</subject><subject>Cold flow</subject><subject>Cold gas</subject><subject>Computational modeling</subject><subject>Deceleration</subject><subject>deflection angle</subject><subject>Engines</subject><subject>flow ratio</subject><subject>Flowmeters</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fuels</subject><subject>Gas turbine engines</subject><subject>Geometric modeling</subject><subject>Geometry</subject><subject>Guide vanes</subject><subject>High temperature</subject><subject>Hole distribution</subject><subject>Hydraulic turbines</subject><subject>Inlet temperature</subject><subject>rotating guide vane torque</subject><subject>Rotating shafts</subject><subject>temperature-fluid-solid coupling algorithm</subject><subject>Torque</subject><subject>Turbines</subject><subject>Turbulence intensity</subject><subject>Turbulent flow</subject><subject>UDF program</subject><subject>variable geometry turbine</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PAyEU3BhNNNpfoAcSz618FvbYNFqbaDy0eiUsPJRmuyjsHvrvxa4xvguPyZt5DFNV1wTPCMH13WK5vN9sZhRTNmOMCUX4SXVBybyeMsHmp__682qS8w6XUgUS8qJyi860hxwyih6tO98O0FlAD8b2MR3B1RAcoDfTQUbbmL4GQKEr9xRM0wJaQdxDnw5oO6QmdIAWbjfkPnTv6Bnsh-lC3l9VZ960GSa_52X1-nC_XT5On15W6-XiaWqZqPupVZgL6ahnFCTMmTXGlUcybwglxljqJQPPvaobBZg7S6yjjcSisYrXxd9ltR51XTQ7_ZnC3qSDjiboIxDTuzapD7YF7RxXsqHEc4k5gFeCc8nBKqGUpY4WrdtR6zPF4jn3eheHVD4ra6pqoSTDtSpTbJyyKeacwP9tJVj_pKPHdPRPOvo3ncK6GVkBAP4xGBWCEPYNLRyLeA</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Zhong, Yan</creator><creator>Chen, Liangyu</creator><creator>Zhao, Lei</creator><creator>Wang, Lei</creator><creator>Yan, Zhuo</creator><creator>Bai, Haoxi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0619-6625</orcidid><orcidid>https://orcid.org/0000-0003-2081-0206</orcidid><orcidid>https://orcid.org/0009-0006-0393-8995</orcidid></search><sort><creationdate>2023</creationdate><title>Analysis of Influence Factors of Guide Vanes Torque in Variable Geometry Turbine Adjusting Mechanism</title><author>Zhong, Yan ; Chen, Liangyu ; Zhao, Lei ; Wang, Lei ; Yan, Zhuo ; Bai, Haoxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-c80457d2f32e7e63caad9573fa121aac2f73ef4f89b8e04dc1cd2b705bc849353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerodynamics</topic><topic>air film hole distribution</topic><topic>Aircraft</topic><topic>Algorithms</topic><topic>Atmospheric modeling</topic><topic>Blades</topic><topic>Cold flow</topic><topic>Cold gas</topic><topic>Computational modeling</topic><topic>Deceleration</topic><topic>deflection angle</topic><topic>Engines</topic><topic>flow ratio</topic><topic>Flowmeters</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fuels</topic><topic>Gas turbine engines</topic><topic>Geometric modeling</topic><topic>Geometry</topic><topic>Guide vanes</topic><topic>High temperature</topic><topic>Hole distribution</topic><topic>Hydraulic turbines</topic><topic>Inlet temperature</topic><topic>rotating guide vane torque</topic><topic>Rotating shafts</topic><topic>temperature-fluid-solid coupling algorithm</topic><topic>Torque</topic><topic>Turbines</topic><topic>Turbulence intensity</topic><topic>Turbulent flow</topic><topic>UDF program</topic><topic>variable geometry turbine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Yan</creatorcontrib><creatorcontrib>Chen, Liangyu</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Yan, Zhuo</creatorcontrib><creatorcontrib>Bai, Haoxi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Yan</au><au>Chen, Liangyu</au><au>Zhao, Lei</au><au>Wang, Lei</au><au>Yan, Zhuo</au><au>Bai, Haoxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Influence Factors of Guide Vanes Torque in Variable Geometry Turbine Adjusting Mechanism</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>131726</spage><epage>131748</epage><pages>131726-131748</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>More and more attention has been paid to research on variable geometry turbine engines with the increasing improvement of performance requirements for military turbines. Due to the fixed working angle of the inlet guide vane, the performance of a conventional fixed geometry turbine is optimal only for turbines near the design point. To match the aircraft's starting, climbing, cruising, deceleration, landing and other working states, it is necessary to change the turbine speed. This will not only reduce the performance of the turbine but also increase the fuel loss. The variable geometry turbine is a perfect solution to this problem. It is not necessary to change the speed of the turbine, but only the working angle of the inlet rotating guide vane of the turbine. The variable geometry turbine can be matched to each state of the aircraft's entire voyage. The turbine guide vane can be adjusted by 7° to bring about a 10% change in the flow rate of the entire machine. With constant turbine inlet temperature, the fuel loss can be effectively reduced. The rotating guide vane is impacted by the high-temperature and high-pressure gas and cold air in the inner culvert. Hot and cold air produce two types of aerodynamic torque on the rotating guide vane. There is also a friction torque on the rotating shaft of the guide vane. Therefore, the rotating guide vanes of variable geometry turbines are subjected to three types of torques. The main objective of this paper is to study three factors influencing the guide vane torque in the main flow path. The three influencing factors are the turbulence intensity of the gas, the flow ratio of cold gas to hot gas and the location distribution of the gas film holes on the guide vane. In this paper, CFD temperature-fluid-solid coupling algorithm combined with UDF program is applied to solve the torque of guide vane shaft at three influencing factors. The results show that the three factors, turbulence intensity, flow ratio and air film hole distribution, can have a significant effect on the guide vane torque. This is of great significance for the research and design of variable geometry turbines.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3335814</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-0619-6625</orcidid><orcidid>https://orcid.org/0000-0003-2081-0206</orcidid><orcidid>https://orcid.org/0009-0006-0393-8995</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.131726-131748
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2895873098
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Aerodynamics
air film hole distribution
Aircraft
Algorithms
Atmospheric modeling
Blades
Cold flow
Cold gas
Computational modeling
Deceleration
deflection angle
Engines
flow ratio
Flowmeters
Fluid dynamics
Fluid flow
Fuels
Gas turbine engines
Geometric modeling
Geometry
Guide vanes
High temperature
Hole distribution
Hydraulic turbines
Inlet temperature
rotating guide vane torque
Rotating shafts
temperature-fluid-solid coupling algorithm
Torque
Turbines
Turbulence intensity
Turbulent flow
UDF program
variable geometry turbine
title Analysis of Influence Factors of Guide Vanes Torque in Variable Geometry Turbine Adjusting Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A23%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Influence%20Factors%20of%20Guide%20Vanes%20Torque%20in%20Variable%20Geometry%20Turbine%20Adjusting%20Mechanism&rft.jtitle=IEEE%20access&rft.au=Zhong,%20Yan&rft.date=2023&rft.volume=11&rft.spage=131726&rft.epage=131748&rft.pages=131726-131748&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3335814&rft_dat=%3Cproquest_cross%3E2895873098%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895873098&rft_id=info:pmid/&rft_ieee_id=10325511&rft_doaj_id=oai_doaj_org_article_dd487b21f4704eef854474ec8588c2d2&rfr_iscdi=true