Performance Quantization and Comparative Assessment of Voltage Equalizers in Mismatched Photovoltaic Differential Power Processing Systems
Voltage equalizers (VEs) are essential for partially shaded photovoltaic (PV) modules by equalizing the voltage of PV modules and preventing anti-paralleled diodes from bypassing the shaded PV modules, resulting in improved power yield under partial shading conditions (PSCs). Recently, different top...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2024-01, Vol.39 (1), p.1656-1675 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1675 |
---|---|
container_issue | 1 |
container_start_page | 1656 |
container_title | IEEE transactions on power electronics |
container_volume | 39 |
creator | Wang, Xue Wen, Huiqing Chu, Guanying Zhu, Yinxiao Yang, Yong Wang, Yiwang Jiang, Lin |
description | Voltage equalizers (VEs) are essential for partially shaded photovoltaic (PV) modules by equalizing the voltage of PV modules and preventing anti-paralleled diodes from bypassing the shaded PV modules, resulting in improved power yield under partial shading conditions (PSCs). Recently, different topologies for VEs have been discussed based on the distributed maximum power point tracking (DMPPT) principle at the module level. Considering that the power flow distribution, operation modes, and actual performance of these VEs show distinct differences, it becomes increasingly important for the performance quantification and comparative assessment of various topologies both theoretically and experimentally. Here, three typical differential-power-processing-based VEs are selected, including series-resonant-voltage-multiplier (SRVM), flyback-based PV-to-IP (Flyback-PV-IP), and flyback-based PV-to-Bus (Flyback-PV-Bus). Key performance indexes for VEs have been defined, including the processed power, power losses, and overall system efficiency. To quantify the performance of different topologies of VEs, an algorithm is developed in MATLAB with daily irradiation and temperature under various PSCs. Moreover, three experimental prototypes for the selected topologies have been built and main tests under different mismatching conditions have been conducted. With a systematic performance quantification and a fair comparison of typical VEs, this article will propose a systematic evaluation method for VE schemes. Meanwhile, the optimal VE topology with its control for typical PSC cases will be identified. |
doi_str_mv | 10.1109/TPEL.2023.3328325 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2895869857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10301476</ieee_id><sourcerecordid>2895869857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-15b4125383391fcc7f9f2d78e26fc58c539387e48639727ab7e9b3870e724df3</originalsourceid><addsrcrecordid>eNpNkMtKAzEUhoMoWKsPILgIuJ6ay6RJlqXWC1Qcsbgd0vREI51JTdJKfQSf2intwtXhHL7_P_AhdEnJgFKib2bVZDpghPEB50xxJo5Qj-qSFoQSeYx6RClRKK35KTpL6ZMQWgpCe-i3guhCbExrAb-sTZv9j8k-tNi0CzwOzcrEbt8AHqUEKTXQZhwcfgvLbN4BT77WZul_ICbsW_zkU2Oy_YAFrj5CDpsd5S2-9c5B7KLeLHEVviHiKgbb9fn2Hb9uU4YmnaMTZ5YJLg6zj2Z3k9n4oZg-3z-OR9PCMl3mgop5SZnginNNnbXSaccWUgEbOiuUFVxzJaFUQ64lk2YuQc-7CwHJyoXjfXS9r13F8LWGlOvPsI5t97FmSgs11ErIjqJ7ysaQUgRXr6JvTNzWlNQ74_XOeL0zXh-Md5mrfcYDwD-ed7LlkP8BRdR_rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895869857</pqid></control><display><type>article</type><title>Performance Quantization and Comparative Assessment of Voltage Equalizers in Mismatched Photovoltaic Differential Power Processing Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Xue ; Wen, Huiqing ; Chu, Guanying ; Zhu, Yinxiao ; Yang, Yong ; Wang, Yiwang ; Jiang, Lin</creator><creatorcontrib>Wang, Xue ; Wen, Huiqing ; Chu, Guanying ; Zhu, Yinxiao ; Yang, Yong ; Wang, Yiwang ; Jiang, Lin</creatorcontrib><description>Voltage equalizers (VEs) are essential for partially shaded photovoltaic (PV) modules by equalizing the voltage of PV modules and preventing anti-paralleled diodes from bypassing the shaded PV modules, resulting in improved power yield under partial shading conditions (PSCs). Recently, different topologies for VEs have been discussed based on the distributed maximum power point tracking (DMPPT) principle at the module level. Considering that the power flow distribution, operation modes, and actual performance of these VEs show distinct differences, it becomes increasingly important for the performance quantification and comparative assessment of various topologies both theoretically and experimentally. Here, three typical differential-power-processing-based VEs are selected, including series-resonant-voltage-multiplier (SRVM), flyback-based PV-to-IP (Flyback-PV-IP), and flyback-based PV-to-Bus (Flyback-PV-Bus). Key performance indexes for VEs have been defined, including the processed power, power losses, and overall system efficiency. To quantify the performance of different topologies of VEs, an algorithm is developed in MATLAB with daily irradiation and temperature under various PSCs. Moreover, three experimental prototypes for the selected topologies have been built and main tests under different mismatching conditions have been conducted. With a systematic performance quantification and a fair comparison of typical VEs, this article will propose a systematic evaluation method for VE schemes. Meanwhile, the optimal VE topology with its control for typical PSC cases will be identified.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2023.3328325</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Differential power processing (DPP) ; Electric potential ; Equalizers ; Flow distribution ; IP networks ; Maximum power point trackers ; Maximum power tracking ; Performance indices ; performance quantization ; Photovoltaic cells ; Photovoltaic systems ; Power flow ; power loss analysis ; Shading ; Stress ; Topology ; Voltage ; voltage equalizer</subject><ispartof>IEEE transactions on power electronics, 2024-01, Vol.39 (1), p.1656-1675</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-15b4125383391fcc7f9f2d78e26fc58c539387e48639727ab7e9b3870e724df3</citedby><cites>FETCH-LOGICAL-c294t-15b4125383391fcc7f9f2d78e26fc58c539387e48639727ab7e9b3870e724df3</cites><orcidid>0000-0003-3987-4947 ; 0000-0001-5736-775X ; 0000-0001-8786-7798 ; 0000-0002-0169-488X ; 0000-0001-6531-2791 ; 0000-0002-7825-0494 ; 0000-0003-0192-5286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10301476$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10301476$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Xue</creatorcontrib><creatorcontrib>Wen, Huiqing</creatorcontrib><creatorcontrib>Chu, Guanying</creatorcontrib><creatorcontrib>Zhu, Yinxiao</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Wang, Yiwang</creatorcontrib><creatorcontrib>Jiang, Lin</creatorcontrib><title>Performance Quantization and Comparative Assessment of Voltage Equalizers in Mismatched Photovoltaic Differential Power Processing Systems</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Voltage equalizers (VEs) are essential for partially shaded photovoltaic (PV) modules by equalizing the voltage of PV modules and preventing anti-paralleled diodes from bypassing the shaded PV modules, resulting in improved power yield under partial shading conditions (PSCs). Recently, different topologies for VEs have been discussed based on the distributed maximum power point tracking (DMPPT) principle at the module level. Considering that the power flow distribution, operation modes, and actual performance of these VEs show distinct differences, it becomes increasingly important for the performance quantification and comparative assessment of various topologies both theoretically and experimentally. Here, three typical differential-power-processing-based VEs are selected, including series-resonant-voltage-multiplier (SRVM), flyback-based PV-to-IP (Flyback-PV-IP), and flyback-based PV-to-Bus (Flyback-PV-Bus). Key performance indexes for VEs have been defined, including the processed power, power losses, and overall system efficiency. To quantify the performance of different topologies of VEs, an algorithm is developed in MATLAB with daily irradiation and temperature under various PSCs. Moreover, three experimental prototypes for the selected topologies have been built and main tests under different mismatching conditions have been conducted. With a systematic performance quantification and a fair comparison of typical VEs, this article will propose a systematic evaluation method for VE schemes. Meanwhile, the optimal VE topology with its control for typical PSC cases will be identified.</description><subject>Algorithms</subject><subject>Differential power processing (DPP)</subject><subject>Electric potential</subject><subject>Equalizers</subject><subject>Flow distribution</subject><subject>IP networks</subject><subject>Maximum power point trackers</subject><subject>Maximum power tracking</subject><subject>Performance indices</subject><subject>performance quantization</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>Power flow</subject><subject>power loss analysis</subject><subject>Shading</subject><subject>Stress</subject><subject>Topology</subject><subject>Voltage</subject><subject>voltage equalizer</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtKAzEUhoMoWKsPILgIuJ6ay6RJlqXWC1Qcsbgd0vREI51JTdJKfQSf2intwtXhHL7_P_AhdEnJgFKib2bVZDpghPEB50xxJo5Qj-qSFoQSeYx6RClRKK35KTpL6ZMQWgpCe-i3guhCbExrAb-sTZv9j8k-tNi0CzwOzcrEbt8AHqUEKTXQZhwcfgvLbN4BT77WZul_ICbsW_zkU2Oy_YAFrj5CDpsd5S2-9c5B7KLeLHEVviHiKgbb9fn2Hb9uU4YmnaMTZ5YJLg6zj2Z3k9n4oZg-3z-OR9PCMl3mgop5SZnginNNnbXSaccWUgEbOiuUFVxzJaFUQ64lk2YuQc-7CwHJyoXjfXS9r13F8LWGlOvPsI5t97FmSgs11ErIjqJ7ysaQUgRXr6JvTNzWlNQ74_XOeL0zXh-Md5mrfcYDwD-ed7LlkP8BRdR_rw</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Wang, Xue</creator><creator>Wen, Huiqing</creator><creator>Chu, Guanying</creator><creator>Zhu, Yinxiao</creator><creator>Yang, Yong</creator><creator>Wang, Yiwang</creator><creator>Jiang, Lin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3987-4947</orcidid><orcidid>https://orcid.org/0000-0001-5736-775X</orcidid><orcidid>https://orcid.org/0000-0001-8786-7798</orcidid><orcidid>https://orcid.org/0000-0002-0169-488X</orcidid><orcidid>https://orcid.org/0000-0001-6531-2791</orcidid><orcidid>https://orcid.org/0000-0002-7825-0494</orcidid><orcidid>https://orcid.org/0000-0003-0192-5286</orcidid></search><sort><creationdate>202401</creationdate><title>Performance Quantization and Comparative Assessment of Voltage Equalizers in Mismatched Photovoltaic Differential Power Processing Systems</title><author>Wang, Xue ; Wen, Huiqing ; Chu, Guanying ; Zhu, Yinxiao ; Yang, Yong ; Wang, Yiwang ; Jiang, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-15b4125383391fcc7f9f2d78e26fc58c539387e48639727ab7e9b3870e724df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Differential power processing (DPP)</topic><topic>Electric potential</topic><topic>Equalizers</topic><topic>Flow distribution</topic><topic>IP networks</topic><topic>Maximum power point trackers</topic><topic>Maximum power tracking</topic><topic>Performance indices</topic><topic>performance quantization</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>Power flow</topic><topic>power loss analysis</topic><topic>Shading</topic><topic>Stress</topic><topic>Topology</topic><topic>Voltage</topic><topic>voltage equalizer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xue</creatorcontrib><creatorcontrib>Wen, Huiqing</creatorcontrib><creatorcontrib>Chu, Guanying</creatorcontrib><creatorcontrib>Zhu, Yinxiao</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Wang, Yiwang</creatorcontrib><creatorcontrib>Jiang, Lin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Xue</au><au>Wen, Huiqing</au><au>Chu, Guanying</au><au>Zhu, Yinxiao</au><au>Yang, Yong</au><au>Wang, Yiwang</au><au>Jiang, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Quantization and Comparative Assessment of Voltage Equalizers in Mismatched Photovoltaic Differential Power Processing Systems</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2024-01</date><risdate>2024</risdate><volume>39</volume><issue>1</issue><spage>1656</spage><epage>1675</epage><pages>1656-1675</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Voltage equalizers (VEs) are essential for partially shaded photovoltaic (PV) modules by equalizing the voltage of PV modules and preventing anti-paralleled diodes from bypassing the shaded PV modules, resulting in improved power yield under partial shading conditions (PSCs). Recently, different topologies for VEs have been discussed based on the distributed maximum power point tracking (DMPPT) principle at the module level. Considering that the power flow distribution, operation modes, and actual performance of these VEs show distinct differences, it becomes increasingly important for the performance quantification and comparative assessment of various topologies both theoretically and experimentally. Here, three typical differential-power-processing-based VEs are selected, including series-resonant-voltage-multiplier (SRVM), flyback-based PV-to-IP (Flyback-PV-IP), and flyback-based PV-to-Bus (Flyback-PV-Bus). Key performance indexes for VEs have been defined, including the processed power, power losses, and overall system efficiency. To quantify the performance of different topologies of VEs, an algorithm is developed in MATLAB with daily irradiation and temperature under various PSCs. Moreover, three experimental prototypes for the selected topologies have been built and main tests under different mismatching conditions have been conducted. With a systematic performance quantification and a fair comparison of typical VEs, this article will propose a systematic evaluation method for VE schemes. Meanwhile, the optimal VE topology with its control for typical PSC cases will be identified.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2023.3328325</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3987-4947</orcidid><orcidid>https://orcid.org/0000-0001-5736-775X</orcidid><orcidid>https://orcid.org/0000-0001-8786-7798</orcidid><orcidid>https://orcid.org/0000-0002-0169-488X</orcidid><orcidid>https://orcid.org/0000-0001-6531-2791</orcidid><orcidid>https://orcid.org/0000-0002-7825-0494</orcidid><orcidid>https://orcid.org/0000-0003-0192-5286</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2024-01, Vol.39 (1), p.1656-1675 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_proquest_journals_2895869857 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Differential power processing (DPP) Electric potential Equalizers Flow distribution IP networks Maximum power point trackers Maximum power tracking Performance indices performance quantization Photovoltaic cells Photovoltaic systems Power flow power loss analysis Shading Stress Topology Voltage voltage equalizer |
title | Performance Quantization and Comparative Assessment of Voltage Equalizers in Mismatched Photovoltaic Differential Power Processing Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Quantization%20and%20Comparative%20Assessment%20of%20Voltage%20Equalizers%20in%20Mismatched%20Photovoltaic%20Differential%20Power%20Processing%20Systems&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Wang,%20Xue&rft.date=2024-01&rft.volume=39&rft.issue=1&rft.spage=1656&rft.epage=1675&rft.pages=1656-1675&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2023.3328325&rft_dat=%3Cproquest_RIE%3E2895869857%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895869857&rft_id=info:pmid/&rft_ieee_id=10301476&rfr_iscdi=true |