Performance Quantization and Comparative Assessment of Voltage Equalizers in Mismatched Photovoltaic Differential Power Processing Systems

Voltage equalizers (VEs) are essential for partially shaded photovoltaic (PV) modules by equalizing the voltage of PV modules and preventing anti-paralleled diodes from bypassing the shaded PV modules, resulting in improved power yield under partial shading conditions (PSCs). Recently, different top...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2024-01, Vol.39 (1), p.1656-1675
Hauptverfasser: Wang, Xue, Wen, Huiqing, Chu, Guanying, Zhu, Yinxiao, Yang, Yong, Wang, Yiwang, Jiang, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1675
container_issue 1
container_start_page 1656
container_title IEEE transactions on power electronics
container_volume 39
creator Wang, Xue
Wen, Huiqing
Chu, Guanying
Zhu, Yinxiao
Yang, Yong
Wang, Yiwang
Jiang, Lin
description Voltage equalizers (VEs) are essential for partially shaded photovoltaic (PV) modules by equalizing the voltage of PV modules and preventing anti-paralleled diodes from bypassing the shaded PV modules, resulting in improved power yield under partial shading conditions (PSCs). Recently, different topologies for VEs have been discussed based on the distributed maximum power point tracking (DMPPT) principle at the module level. Considering that the power flow distribution, operation modes, and actual performance of these VEs show distinct differences, it becomes increasingly important for the performance quantification and comparative assessment of various topologies both theoretically and experimentally. Here, three typical differential-power-processing-based VEs are selected, including series-resonant-voltage-multiplier (SRVM), flyback-based PV-to-IP (Flyback-PV-IP), and flyback-based PV-to-Bus (Flyback-PV-Bus). Key performance indexes for VEs have been defined, including the processed power, power losses, and overall system efficiency. To quantify the performance of different topologies of VEs, an algorithm is developed in MATLAB with daily irradiation and temperature under various PSCs. Moreover, three experimental prototypes for the selected topologies have been built and main tests under different mismatching conditions have been conducted. With a systematic performance quantification and a fair comparison of typical VEs, this article will propose a systematic evaluation method for VE schemes. Meanwhile, the optimal VE topology with its control for typical PSC cases will be identified.
doi_str_mv 10.1109/TPEL.2023.3328325
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2895869857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10301476</ieee_id><sourcerecordid>2895869857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-15b4125383391fcc7f9f2d78e26fc58c539387e48639727ab7e9b3870e724df3</originalsourceid><addsrcrecordid>eNpNkMtKAzEUhoMoWKsPILgIuJ6ay6RJlqXWC1Qcsbgd0vREI51JTdJKfQSf2intwtXhHL7_P_AhdEnJgFKib2bVZDpghPEB50xxJo5Qj-qSFoQSeYx6RClRKK35KTpL6ZMQWgpCe-i3guhCbExrAb-sTZv9j8k-tNi0CzwOzcrEbt8AHqUEKTXQZhwcfgvLbN4BT77WZul_ICbsW_zkU2Oy_YAFrj5CDpsd5S2-9c5B7KLeLHEVviHiKgbb9fn2Hb9uU4YmnaMTZ5YJLg6zj2Z3k9n4oZg-3z-OR9PCMl3mgop5SZnginNNnbXSaccWUgEbOiuUFVxzJaFUQ64lk2YuQc-7CwHJyoXjfXS9r13F8LWGlOvPsI5t97FmSgs11ErIjqJ7ysaQUgRXr6JvTNzWlNQ74_XOeL0zXh-Md5mrfcYDwD-ed7LlkP8BRdR_rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895869857</pqid></control><display><type>article</type><title>Performance Quantization and Comparative Assessment of Voltage Equalizers in Mismatched Photovoltaic Differential Power Processing Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Xue ; Wen, Huiqing ; Chu, Guanying ; Zhu, Yinxiao ; Yang, Yong ; Wang, Yiwang ; Jiang, Lin</creator><creatorcontrib>Wang, Xue ; Wen, Huiqing ; Chu, Guanying ; Zhu, Yinxiao ; Yang, Yong ; Wang, Yiwang ; Jiang, Lin</creatorcontrib><description>Voltage equalizers (VEs) are essential for partially shaded photovoltaic (PV) modules by equalizing the voltage of PV modules and preventing anti-paralleled diodes from bypassing the shaded PV modules, resulting in improved power yield under partial shading conditions (PSCs). Recently, different topologies for VEs have been discussed based on the distributed maximum power point tracking (DMPPT) principle at the module level. Considering that the power flow distribution, operation modes, and actual performance of these VEs show distinct differences, it becomes increasingly important for the performance quantification and comparative assessment of various topologies both theoretically and experimentally. Here, three typical differential-power-processing-based VEs are selected, including series-resonant-voltage-multiplier (SRVM), flyback-based PV-to-IP (Flyback-PV-IP), and flyback-based PV-to-Bus (Flyback-PV-Bus). Key performance indexes for VEs have been defined, including the processed power, power losses, and overall system efficiency. To quantify the performance of different topologies of VEs, an algorithm is developed in MATLAB with daily irradiation and temperature under various PSCs. Moreover, three experimental prototypes for the selected topologies have been built and main tests under different mismatching conditions have been conducted. With a systematic performance quantification and a fair comparison of typical VEs, this article will propose a systematic evaluation method for VE schemes. Meanwhile, the optimal VE topology with its control for typical PSC cases will be identified.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2023.3328325</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Differential power processing (DPP) ; Electric potential ; Equalizers ; Flow distribution ; IP networks ; Maximum power point trackers ; Maximum power tracking ; Performance indices ; performance quantization ; Photovoltaic cells ; Photovoltaic systems ; Power flow ; power loss analysis ; Shading ; Stress ; Topology ; Voltage ; voltage equalizer</subject><ispartof>IEEE transactions on power electronics, 2024-01, Vol.39 (1), p.1656-1675</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-15b4125383391fcc7f9f2d78e26fc58c539387e48639727ab7e9b3870e724df3</citedby><cites>FETCH-LOGICAL-c294t-15b4125383391fcc7f9f2d78e26fc58c539387e48639727ab7e9b3870e724df3</cites><orcidid>0000-0003-3987-4947 ; 0000-0001-5736-775X ; 0000-0001-8786-7798 ; 0000-0002-0169-488X ; 0000-0001-6531-2791 ; 0000-0002-7825-0494 ; 0000-0003-0192-5286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10301476$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10301476$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Xue</creatorcontrib><creatorcontrib>Wen, Huiqing</creatorcontrib><creatorcontrib>Chu, Guanying</creatorcontrib><creatorcontrib>Zhu, Yinxiao</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Wang, Yiwang</creatorcontrib><creatorcontrib>Jiang, Lin</creatorcontrib><title>Performance Quantization and Comparative Assessment of Voltage Equalizers in Mismatched Photovoltaic Differential Power Processing Systems</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Voltage equalizers (VEs) are essential for partially shaded photovoltaic (PV) modules by equalizing the voltage of PV modules and preventing anti-paralleled diodes from bypassing the shaded PV modules, resulting in improved power yield under partial shading conditions (PSCs). Recently, different topologies for VEs have been discussed based on the distributed maximum power point tracking (DMPPT) principle at the module level. Considering that the power flow distribution, operation modes, and actual performance of these VEs show distinct differences, it becomes increasingly important for the performance quantification and comparative assessment of various topologies both theoretically and experimentally. Here, three typical differential-power-processing-based VEs are selected, including series-resonant-voltage-multiplier (SRVM), flyback-based PV-to-IP (Flyback-PV-IP), and flyback-based PV-to-Bus (Flyback-PV-Bus). Key performance indexes for VEs have been defined, including the processed power, power losses, and overall system efficiency. To quantify the performance of different topologies of VEs, an algorithm is developed in MATLAB with daily irradiation and temperature under various PSCs. Moreover, three experimental prototypes for the selected topologies have been built and main tests under different mismatching conditions have been conducted. With a systematic performance quantification and a fair comparison of typical VEs, this article will propose a systematic evaluation method for VE schemes. Meanwhile, the optimal VE topology with its control for typical PSC cases will be identified.</description><subject>Algorithms</subject><subject>Differential power processing (DPP)</subject><subject>Electric potential</subject><subject>Equalizers</subject><subject>Flow distribution</subject><subject>IP networks</subject><subject>Maximum power point trackers</subject><subject>Maximum power tracking</subject><subject>Performance indices</subject><subject>performance quantization</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>Power flow</subject><subject>power loss analysis</subject><subject>Shading</subject><subject>Stress</subject><subject>Topology</subject><subject>Voltage</subject><subject>voltage equalizer</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtKAzEUhoMoWKsPILgIuJ6ay6RJlqXWC1Qcsbgd0vREI51JTdJKfQSf2intwtXhHL7_P_AhdEnJgFKib2bVZDpghPEB50xxJo5Qj-qSFoQSeYx6RClRKK35KTpL6ZMQWgpCe-i3guhCbExrAb-sTZv9j8k-tNi0CzwOzcrEbt8AHqUEKTXQZhwcfgvLbN4BT77WZul_ICbsW_zkU2Oy_YAFrj5CDpsd5S2-9c5B7KLeLHEVviHiKgbb9fn2Hb9uU4YmnaMTZ5YJLg6zj2Z3k9n4oZg-3z-OR9PCMl3mgop5SZnginNNnbXSaccWUgEbOiuUFVxzJaFUQ64lk2YuQc-7CwHJyoXjfXS9r13F8LWGlOvPsI5t97FmSgs11ErIjqJ7ysaQUgRXr6JvTNzWlNQ74_XOeL0zXh-Md5mrfcYDwD-ed7LlkP8BRdR_rw</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Wang, Xue</creator><creator>Wen, Huiqing</creator><creator>Chu, Guanying</creator><creator>Zhu, Yinxiao</creator><creator>Yang, Yong</creator><creator>Wang, Yiwang</creator><creator>Jiang, Lin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3987-4947</orcidid><orcidid>https://orcid.org/0000-0001-5736-775X</orcidid><orcidid>https://orcid.org/0000-0001-8786-7798</orcidid><orcidid>https://orcid.org/0000-0002-0169-488X</orcidid><orcidid>https://orcid.org/0000-0001-6531-2791</orcidid><orcidid>https://orcid.org/0000-0002-7825-0494</orcidid><orcidid>https://orcid.org/0000-0003-0192-5286</orcidid></search><sort><creationdate>202401</creationdate><title>Performance Quantization and Comparative Assessment of Voltage Equalizers in Mismatched Photovoltaic Differential Power Processing Systems</title><author>Wang, Xue ; Wen, Huiqing ; Chu, Guanying ; Zhu, Yinxiao ; Yang, Yong ; Wang, Yiwang ; Jiang, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-15b4125383391fcc7f9f2d78e26fc58c539387e48639727ab7e9b3870e724df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Differential power processing (DPP)</topic><topic>Electric potential</topic><topic>Equalizers</topic><topic>Flow distribution</topic><topic>IP networks</topic><topic>Maximum power point trackers</topic><topic>Maximum power tracking</topic><topic>Performance indices</topic><topic>performance quantization</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>Power flow</topic><topic>power loss analysis</topic><topic>Shading</topic><topic>Stress</topic><topic>Topology</topic><topic>Voltage</topic><topic>voltage equalizer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xue</creatorcontrib><creatorcontrib>Wen, Huiqing</creatorcontrib><creatorcontrib>Chu, Guanying</creatorcontrib><creatorcontrib>Zhu, Yinxiao</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Wang, Yiwang</creatorcontrib><creatorcontrib>Jiang, Lin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Xue</au><au>Wen, Huiqing</au><au>Chu, Guanying</au><au>Zhu, Yinxiao</au><au>Yang, Yong</au><au>Wang, Yiwang</au><au>Jiang, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Quantization and Comparative Assessment of Voltage Equalizers in Mismatched Photovoltaic Differential Power Processing Systems</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2024-01</date><risdate>2024</risdate><volume>39</volume><issue>1</issue><spage>1656</spage><epage>1675</epage><pages>1656-1675</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Voltage equalizers (VEs) are essential for partially shaded photovoltaic (PV) modules by equalizing the voltage of PV modules and preventing anti-paralleled diodes from bypassing the shaded PV modules, resulting in improved power yield under partial shading conditions (PSCs). Recently, different topologies for VEs have been discussed based on the distributed maximum power point tracking (DMPPT) principle at the module level. Considering that the power flow distribution, operation modes, and actual performance of these VEs show distinct differences, it becomes increasingly important for the performance quantification and comparative assessment of various topologies both theoretically and experimentally. Here, three typical differential-power-processing-based VEs are selected, including series-resonant-voltage-multiplier (SRVM), flyback-based PV-to-IP (Flyback-PV-IP), and flyback-based PV-to-Bus (Flyback-PV-Bus). Key performance indexes for VEs have been defined, including the processed power, power losses, and overall system efficiency. To quantify the performance of different topologies of VEs, an algorithm is developed in MATLAB with daily irradiation and temperature under various PSCs. Moreover, three experimental prototypes for the selected topologies have been built and main tests under different mismatching conditions have been conducted. With a systematic performance quantification and a fair comparison of typical VEs, this article will propose a systematic evaluation method for VE schemes. Meanwhile, the optimal VE topology with its control for typical PSC cases will be identified.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2023.3328325</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3987-4947</orcidid><orcidid>https://orcid.org/0000-0001-5736-775X</orcidid><orcidid>https://orcid.org/0000-0001-8786-7798</orcidid><orcidid>https://orcid.org/0000-0002-0169-488X</orcidid><orcidid>https://orcid.org/0000-0001-6531-2791</orcidid><orcidid>https://orcid.org/0000-0002-7825-0494</orcidid><orcidid>https://orcid.org/0000-0003-0192-5286</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2024-01, Vol.39 (1), p.1656-1675
issn 0885-8993
1941-0107
language eng
recordid cdi_proquest_journals_2895869857
source IEEE Electronic Library (IEL)
subjects Algorithms
Differential power processing (DPP)
Electric potential
Equalizers
Flow distribution
IP networks
Maximum power point trackers
Maximum power tracking
Performance indices
performance quantization
Photovoltaic cells
Photovoltaic systems
Power flow
power loss analysis
Shading
Stress
Topology
Voltage
voltage equalizer
title Performance Quantization and Comparative Assessment of Voltage Equalizers in Mismatched Photovoltaic Differential Power Processing Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Quantization%20and%20Comparative%20Assessment%20of%20Voltage%20Equalizers%20in%20Mismatched%20Photovoltaic%20Differential%20Power%20Processing%20Systems&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Wang,%20Xue&rft.date=2024-01&rft.volume=39&rft.issue=1&rft.spage=1656&rft.epage=1675&rft.pages=1656-1675&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2023.3328325&rft_dat=%3Cproquest_RIE%3E2895869857%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895869857&rft_id=info:pmid/&rft_ieee_id=10301476&rfr_iscdi=true