COSMOGLOBE DR1 results

We present COSMOGLOBE Data Release 1, which implements the first joint analysis of WMAP and Planck LFI time-ordered data, processed within a single Bayesian end-to-end framework. This framework directly builds on a similar analysis of the LFI measurements by the BEYONDPLANCK collaboration, and appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2023-11, Vol.679
Hauptverfasser: Watts, D J, Basyrov, A, Eskilt, J R, Galloway, M, Gjerløw, E, Hergt, L T, Herman, D, Ihle, H T, Paradiso, S, Rahman, F, Thommesen, H, Aurlien, R, Bersanelli, M, Bianchi, L A, Brilenkov, M, Colombo, L P L, Eriksen, H K, Franceschet, C, Fuskeland, U, Hensley, B, Hoerning, G A, Lee, K, Lunde, J G S, Marins, A, Nerval, S K, Patel, S K, Regnier, M, San, M, Sanyal, S, N.-O. Stutzer, Verma, A, Wehus, I K, Zhou, Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Astronomy and astrophysics (Berlin)
container_volume 679
creator Watts, D J
Basyrov, A
Eskilt, J R
Galloway, M
Gjerløw, E
Hergt, L T
Herman, D
Ihle, H T
Paradiso, S
Rahman, F
Thommesen, H
Aurlien, R
Bersanelli, M
Bianchi, L A
Brilenkov, M
Colombo, L P L
Eriksen, H K
Franceschet, C
Fuskeland, U
Hensley, B
Hoerning, G A
Lee, K
Lunde, J G S
Marins, A
Nerval, S K
Patel, S K
Regnier, M
San, M
Sanyal, S
N.-O. Stutzer
Verma, A
Wehus, I K
Zhou, Y
description We present COSMOGLOBE Data Release 1, which implements the first joint analysis of WMAP and Planck LFI time-ordered data, processed within a single Bayesian end-to-end framework. This framework directly builds on a similar analysis of the LFI measurements by the BEYONDPLANCK collaboration, and approaches the cosmic microwave background (CMB) analysis challenge through Gibbs sampling of a global posterior distribution, simultaneously accounting for calibration, mapmaking, and component separation. The computational cost of producing one complete WMAP+LFI Gibbs sample is 812 CPU-h, of which 603 CPU-h are spent on WMAP low-level processing; this demonstrates that end-to-end Bayesian analysis of the WMAP data is computationally feasible. We find that our WMAP posterior mean temperature sky maps and CMB temperature power spectrum are largely consistent with the official WMAP9 results. Perhaps the most notable difference is that our CMB dipole amplitude is 3366.2 ± 1.4 μK, which is 11 μK higher than the WMAP9 estimate and 2.5σ higher than BEYONDPLANCK; however, it is in perfect agreement with the HFI-dominated Planck PR4 result. In contrast, our WMAP polarization maps differ more notably from the WMAP9 results, and in general exhibit significantly lower large-scale residuals. We attribute this to a better constrained gain and transmission imbalance model. It is particularly noteworthy that the W-band polarization sky map, which was excluded from the official WMAP cosmological analysis, for the first time appears visually consistent with the V-band sky map. Similarly, the long standing discrepancy between the WMAP K-band and LFI 30 GHz maps is finally resolved, and the difference between the two maps appears consistent with instrumental noise at high Galactic latitudes. Relatedly, these updated maps allowed us for the first time to combine WMAP and LFI polarization data into a single coherent model of large-scale polarized synchrotron emission. Still, we identified a few issues that require additional work, including (1) low-level noise modeling; (2) large-scale temperature residuals at the 1–2 μK level; and (3) a strong degeneracy between the absolute K-band calibration and the dipole of the anomalous microwave emission component. We conclude that leveraging the complementary strengths of WMAP and LFI has allowed the mitigation of both experiments’ weaknesses, and resulted in new state-of-the-art WMAP sky maps. All maps and the associated code are made publicly
doi_str_mv 10.1051/0004-6361/202346414
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2895777844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895777844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1234-c807c4de27a9e0168c82724840403ed6bdf53d71f8b16479da224c2bd9f57cde3</originalsourceid><addsrcrecordid>eNo9jUFLw0AQRpeiYGx79dJLwfPamdnJzuaosVYhJaD2XJLdzaEUq9nm_xtQenp88PieUguEB4QcVwDA2hqLKwIybBl5ojJkQxqE7ZXKLsaNuk3pME5CZzJ1V9Yf23pT1U_r5fM7LvuYhuM5zdR11xxTnP9zqnYv68_yVVf15q18rLTHsaO9A_EcIklTREDrvCMhdgwMJgbbhi43QbBzLVqWIjRE7KkNRZeLD9FM1f3f73d_-hliOu8Pp6H_GpN7ckUuIo7Z_ALSWToW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895777844</pqid></control><display><type>article</type><title>COSMOGLOBE DR1 results</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>EDP Sciences</source><creator>Watts, D J ; Basyrov, A ; Eskilt, J R ; Galloway, M ; Gjerløw, E ; Hergt, L T ; Herman, D ; Ihle, H T ; Paradiso, S ; Rahman, F ; Thommesen, H ; Aurlien, R ; Bersanelli, M ; Bianchi, L A ; Brilenkov, M ; Colombo, L P L ; Eriksen, H K ; Franceschet, C ; Fuskeland, U ; Hensley, B ; Hoerning, G A ; Lee, K ; Lunde, J G S ; Marins, A ; Nerval, S K ; Patel, S K ; Regnier, M ; San, M ; Sanyal, S ; N.-O. Stutzer ; Verma, A ; Wehus, I K ; Zhou, Y</creator><creatorcontrib>Watts, D J ; Basyrov, A ; Eskilt, J R ; Galloway, M ; Gjerløw, E ; Hergt, L T ; Herman, D ; Ihle, H T ; Paradiso, S ; Rahman, F ; Thommesen, H ; Aurlien, R ; Bersanelli, M ; Bianchi, L A ; Brilenkov, M ; Colombo, L P L ; Eriksen, H K ; Franceschet, C ; Fuskeland, U ; Hensley, B ; Hoerning, G A ; Lee, K ; Lunde, J G S ; Marins, A ; Nerval, S K ; Patel, S K ; Regnier, M ; San, M ; Sanyal, S ; N.-O. Stutzer ; Verma, A ; Wehus, I K ; Zhou, Y</creatorcontrib><description>We present COSMOGLOBE Data Release 1, which implements the first joint analysis of WMAP and Planck LFI time-ordered data, processed within a single Bayesian end-to-end framework. This framework directly builds on a similar analysis of the LFI measurements by the BEYONDPLANCK collaboration, and approaches the cosmic microwave background (CMB) analysis challenge through Gibbs sampling of a global posterior distribution, simultaneously accounting for calibration, mapmaking, and component separation. The computational cost of producing one complete WMAP+LFI Gibbs sample is 812 CPU-h, of which 603 CPU-h are spent on WMAP low-level processing; this demonstrates that end-to-end Bayesian analysis of the WMAP data is computationally feasible. We find that our WMAP posterior mean temperature sky maps and CMB temperature power spectrum are largely consistent with the official WMAP9 results. Perhaps the most notable difference is that our CMB dipole amplitude is 3366.2 ± 1.4 μK, which is 11 μK higher than the WMAP9 estimate and 2.5σ higher than BEYONDPLANCK; however, it is in perfect agreement with the HFI-dominated Planck PR4 result. In contrast, our WMAP polarization maps differ more notably from the WMAP9 results, and in general exhibit significantly lower large-scale residuals. We attribute this to a better constrained gain and transmission imbalance model. It is particularly noteworthy that the W-band polarization sky map, which was excluded from the official WMAP cosmological analysis, for the first time appears visually consistent with the V-band sky map. Similarly, the long standing discrepancy between the WMAP K-band and LFI 30 GHz maps is finally resolved, and the difference between the two maps appears consistent with instrumental noise at high Galactic latitudes. Relatedly, these updated maps allowed us for the first time to combine WMAP and LFI polarization data into a single coherent model of large-scale polarized synchrotron emission. Still, we identified a few issues that require additional work, including (1) low-level noise modeling; (2) large-scale temperature residuals at the 1–2 μK level; and (3) a strong degeneracy between the absolute K-band calibration and the dipole of the anomalous microwave emission component. We conclude that leveraging the complementary strengths of WMAP and LFI has allowed the mitigation of both experiments’ weaknesses, and resulted in new state-of-the-art WMAP sky maps. All maps and the associated code are made publicly available through the COSMOGLOBE web page.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/202346414</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Astronomical maps ; Bayesian analysis ; Calibration ; Cartography ; Cosmic microwave background ; Dipoles ; Extremely high frequencies ; Microwave emission ; Polarization ; Star maps ; Synchrotrons</subject><ispartof>Astronomy and astrophysics (Berlin), 2023-11, Vol.679</ispartof><rights>2023. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1234-c807c4de27a9e0168c82724840403ed6bdf53d71f8b16479da224c2bd9f57cde3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Watts, D J</creatorcontrib><creatorcontrib>Basyrov, A</creatorcontrib><creatorcontrib>Eskilt, J R</creatorcontrib><creatorcontrib>Galloway, M</creatorcontrib><creatorcontrib>Gjerløw, E</creatorcontrib><creatorcontrib>Hergt, L T</creatorcontrib><creatorcontrib>Herman, D</creatorcontrib><creatorcontrib>Ihle, H T</creatorcontrib><creatorcontrib>Paradiso, S</creatorcontrib><creatorcontrib>Rahman, F</creatorcontrib><creatorcontrib>Thommesen, H</creatorcontrib><creatorcontrib>Aurlien, R</creatorcontrib><creatorcontrib>Bersanelli, M</creatorcontrib><creatorcontrib>Bianchi, L A</creatorcontrib><creatorcontrib>Brilenkov, M</creatorcontrib><creatorcontrib>Colombo, L P L</creatorcontrib><creatorcontrib>Eriksen, H K</creatorcontrib><creatorcontrib>Franceschet, C</creatorcontrib><creatorcontrib>Fuskeland, U</creatorcontrib><creatorcontrib>Hensley, B</creatorcontrib><creatorcontrib>Hoerning, G A</creatorcontrib><creatorcontrib>Lee, K</creatorcontrib><creatorcontrib>Lunde, J G S</creatorcontrib><creatorcontrib>Marins, A</creatorcontrib><creatorcontrib>Nerval, S K</creatorcontrib><creatorcontrib>Patel, S K</creatorcontrib><creatorcontrib>Regnier, M</creatorcontrib><creatorcontrib>San, M</creatorcontrib><creatorcontrib>Sanyal, S</creatorcontrib><creatorcontrib>N.-O. Stutzer</creatorcontrib><creatorcontrib>Verma, A</creatorcontrib><creatorcontrib>Wehus, I K</creatorcontrib><creatorcontrib>Zhou, Y</creatorcontrib><title>COSMOGLOBE DR1 results</title><title>Astronomy and astrophysics (Berlin)</title><description>We present COSMOGLOBE Data Release 1, which implements the first joint analysis of WMAP and Planck LFI time-ordered data, processed within a single Bayesian end-to-end framework. This framework directly builds on a similar analysis of the LFI measurements by the BEYONDPLANCK collaboration, and approaches the cosmic microwave background (CMB) analysis challenge through Gibbs sampling of a global posterior distribution, simultaneously accounting for calibration, mapmaking, and component separation. The computational cost of producing one complete WMAP+LFI Gibbs sample is 812 CPU-h, of which 603 CPU-h are spent on WMAP low-level processing; this demonstrates that end-to-end Bayesian analysis of the WMAP data is computationally feasible. We find that our WMAP posterior mean temperature sky maps and CMB temperature power spectrum are largely consistent with the official WMAP9 results. Perhaps the most notable difference is that our CMB dipole amplitude is 3366.2 ± 1.4 μK, which is 11 μK higher than the WMAP9 estimate and 2.5σ higher than BEYONDPLANCK; however, it is in perfect agreement with the HFI-dominated Planck PR4 result. In contrast, our WMAP polarization maps differ more notably from the WMAP9 results, and in general exhibit significantly lower large-scale residuals. We attribute this to a better constrained gain and transmission imbalance model. It is particularly noteworthy that the W-band polarization sky map, which was excluded from the official WMAP cosmological analysis, for the first time appears visually consistent with the V-band sky map. Similarly, the long standing discrepancy between the WMAP K-band and LFI 30 GHz maps is finally resolved, and the difference between the two maps appears consistent with instrumental noise at high Galactic latitudes. Relatedly, these updated maps allowed us for the first time to combine WMAP and LFI polarization data into a single coherent model of large-scale polarized synchrotron emission. Still, we identified a few issues that require additional work, including (1) low-level noise modeling; (2) large-scale temperature residuals at the 1–2 μK level; and (3) a strong degeneracy between the absolute K-band calibration and the dipole of the anomalous microwave emission component. We conclude that leveraging the complementary strengths of WMAP and LFI has allowed the mitigation of both experiments’ weaknesses, and resulted in new state-of-the-art WMAP sky maps. All maps and the associated code are made publicly available through the COSMOGLOBE web page.</description><subject>Astronomical maps</subject><subject>Bayesian analysis</subject><subject>Calibration</subject><subject>Cartography</subject><subject>Cosmic microwave background</subject><subject>Dipoles</subject><subject>Extremely high frequencies</subject><subject>Microwave emission</subject><subject>Polarization</subject><subject>Star maps</subject><subject>Synchrotrons</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9jUFLw0AQRpeiYGx79dJLwfPamdnJzuaosVYhJaD2XJLdzaEUq9nm_xtQenp88PieUguEB4QcVwDA2hqLKwIybBl5ojJkQxqE7ZXKLsaNuk3pME5CZzJ1V9Yf23pT1U_r5fM7LvuYhuM5zdR11xxTnP9zqnYv68_yVVf15q18rLTHsaO9A_EcIklTREDrvCMhdgwMJgbbhi43QbBzLVqWIjRE7KkNRZeLD9FM1f3f73d_-hliOu8Pp6H_GpN7ckUuIo7Z_ALSWToW</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Watts, D J</creator><creator>Basyrov, A</creator><creator>Eskilt, J R</creator><creator>Galloway, M</creator><creator>Gjerløw, E</creator><creator>Hergt, L T</creator><creator>Herman, D</creator><creator>Ihle, H T</creator><creator>Paradiso, S</creator><creator>Rahman, F</creator><creator>Thommesen, H</creator><creator>Aurlien, R</creator><creator>Bersanelli, M</creator><creator>Bianchi, L A</creator><creator>Brilenkov, M</creator><creator>Colombo, L P L</creator><creator>Eriksen, H K</creator><creator>Franceschet, C</creator><creator>Fuskeland, U</creator><creator>Hensley, B</creator><creator>Hoerning, G A</creator><creator>Lee, K</creator><creator>Lunde, J G S</creator><creator>Marins, A</creator><creator>Nerval, S K</creator><creator>Patel, S K</creator><creator>Regnier, M</creator><creator>San, M</creator><creator>Sanyal, S</creator><creator>N.-O. Stutzer</creator><creator>Verma, A</creator><creator>Wehus, I K</creator><creator>Zhou, Y</creator><general>EDP Sciences</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231101</creationdate><title>COSMOGLOBE DR1 results</title><author>Watts, D J ; Basyrov, A ; Eskilt, J R ; Galloway, M ; Gjerløw, E ; Hergt, L T ; Herman, D ; Ihle, H T ; Paradiso, S ; Rahman, F ; Thommesen, H ; Aurlien, R ; Bersanelli, M ; Bianchi, L A ; Brilenkov, M ; Colombo, L P L ; Eriksen, H K ; Franceschet, C ; Fuskeland, U ; Hensley, B ; Hoerning, G A ; Lee, K ; Lunde, J G S ; Marins, A ; Nerval, S K ; Patel, S K ; Regnier, M ; San, M ; Sanyal, S ; N.-O. Stutzer ; Verma, A ; Wehus, I K ; Zhou, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1234-c807c4de27a9e0168c82724840403ed6bdf53d71f8b16479da224c2bd9f57cde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Astronomical maps</topic><topic>Bayesian analysis</topic><topic>Calibration</topic><topic>Cartography</topic><topic>Cosmic microwave background</topic><topic>Dipoles</topic><topic>Extremely high frequencies</topic><topic>Microwave emission</topic><topic>Polarization</topic><topic>Star maps</topic><topic>Synchrotrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watts, D J</creatorcontrib><creatorcontrib>Basyrov, A</creatorcontrib><creatorcontrib>Eskilt, J R</creatorcontrib><creatorcontrib>Galloway, M</creatorcontrib><creatorcontrib>Gjerløw, E</creatorcontrib><creatorcontrib>Hergt, L T</creatorcontrib><creatorcontrib>Herman, D</creatorcontrib><creatorcontrib>Ihle, H T</creatorcontrib><creatorcontrib>Paradiso, S</creatorcontrib><creatorcontrib>Rahman, F</creatorcontrib><creatorcontrib>Thommesen, H</creatorcontrib><creatorcontrib>Aurlien, R</creatorcontrib><creatorcontrib>Bersanelli, M</creatorcontrib><creatorcontrib>Bianchi, L A</creatorcontrib><creatorcontrib>Brilenkov, M</creatorcontrib><creatorcontrib>Colombo, L P L</creatorcontrib><creatorcontrib>Eriksen, H K</creatorcontrib><creatorcontrib>Franceschet, C</creatorcontrib><creatorcontrib>Fuskeland, U</creatorcontrib><creatorcontrib>Hensley, B</creatorcontrib><creatorcontrib>Hoerning, G A</creatorcontrib><creatorcontrib>Lee, K</creatorcontrib><creatorcontrib>Lunde, J G S</creatorcontrib><creatorcontrib>Marins, A</creatorcontrib><creatorcontrib>Nerval, S K</creatorcontrib><creatorcontrib>Patel, S K</creatorcontrib><creatorcontrib>Regnier, M</creatorcontrib><creatorcontrib>San, M</creatorcontrib><creatorcontrib>Sanyal, S</creatorcontrib><creatorcontrib>N.-O. Stutzer</creatorcontrib><creatorcontrib>Verma, A</creatorcontrib><creatorcontrib>Wehus, I K</creatorcontrib><creatorcontrib>Zhou, Y</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watts, D J</au><au>Basyrov, A</au><au>Eskilt, J R</au><au>Galloway, M</au><au>Gjerløw, E</au><au>Hergt, L T</au><au>Herman, D</au><au>Ihle, H T</au><au>Paradiso, S</au><au>Rahman, F</au><au>Thommesen, H</au><au>Aurlien, R</au><au>Bersanelli, M</au><au>Bianchi, L A</au><au>Brilenkov, M</au><au>Colombo, L P L</au><au>Eriksen, H K</au><au>Franceschet, C</au><au>Fuskeland, U</au><au>Hensley, B</au><au>Hoerning, G A</au><au>Lee, K</au><au>Lunde, J G S</au><au>Marins, A</au><au>Nerval, S K</au><au>Patel, S K</au><au>Regnier, M</au><au>San, M</au><au>Sanyal, S</au><au>N.-O. Stutzer</au><au>Verma, A</au><au>Wehus, I K</au><au>Zhou, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COSMOGLOBE DR1 results</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>679</volume><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>We present COSMOGLOBE Data Release 1, which implements the first joint analysis of WMAP and Planck LFI time-ordered data, processed within a single Bayesian end-to-end framework. This framework directly builds on a similar analysis of the LFI measurements by the BEYONDPLANCK collaboration, and approaches the cosmic microwave background (CMB) analysis challenge through Gibbs sampling of a global posterior distribution, simultaneously accounting for calibration, mapmaking, and component separation. The computational cost of producing one complete WMAP+LFI Gibbs sample is 812 CPU-h, of which 603 CPU-h are spent on WMAP low-level processing; this demonstrates that end-to-end Bayesian analysis of the WMAP data is computationally feasible. We find that our WMAP posterior mean temperature sky maps and CMB temperature power spectrum are largely consistent with the official WMAP9 results. Perhaps the most notable difference is that our CMB dipole amplitude is 3366.2 ± 1.4 μK, which is 11 μK higher than the WMAP9 estimate and 2.5σ higher than BEYONDPLANCK; however, it is in perfect agreement with the HFI-dominated Planck PR4 result. In contrast, our WMAP polarization maps differ more notably from the WMAP9 results, and in general exhibit significantly lower large-scale residuals. We attribute this to a better constrained gain and transmission imbalance model. It is particularly noteworthy that the W-band polarization sky map, which was excluded from the official WMAP cosmological analysis, for the first time appears visually consistent with the V-band sky map. Similarly, the long standing discrepancy between the WMAP K-band and LFI 30 GHz maps is finally resolved, and the difference between the two maps appears consistent with instrumental noise at high Galactic latitudes. Relatedly, these updated maps allowed us for the first time to combine WMAP and LFI polarization data into a single coherent model of large-scale polarized synchrotron emission. Still, we identified a few issues that require additional work, including (1) low-level noise modeling; (2) large-scale temperature residuals at the 1–2 μK level; and (3) a strong degeneracy between the absolute K-band calibration and the dipole of the anomalous microwave emission component. We conclude that leveraging the complementary strengths of WMAP and LFI has allowed the mitigation of both experiments’ weaknesses, and resulted in new state-of-the-art WMAP sky maps. All maps and the associated code are made publicly available through the COSMOGLOBE web page.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202346414</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2023-11, Vol.679
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_journals_2895777844
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; EDP Sciences
subjects Astronomical maps
Bayesian analysis
Calibration
Cartography
Cosmic microwave background
Dipoles
Extremely high frequencies
Microwave emission
Polarization
Star maps
Synchrotrons
title COSMOGLOBE DR1 results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COSMOGLOBE%20DR1%20results&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Watts,%20D%20J&rft.date=2023-11-01&rft.volume=679&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202346414&rft_dat=%3Cproquest%3E2895777844%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895777844&rft_id=info:pmid/&rfr_iscdi=true