Variable selection for nonparametric quantile regression via measurement error model

This paper proposes a variable selection procedure for the nonparametric quantile regression based on the measurement error model (MEM). The “false” Gaussian measurement error is forced into the covariates to construct a nonparametric quantile regression loss function with the MEM framework. Under t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical papers (Berlin, Germany) Germany), 2023-12, Vol.64 (6), p.2207-2224
Hauptverfasser: Lai, Peng, Yan, Xi, Sun, Xin, Pang, Haozhe, Zhou, Yanqiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a variable selection procedure for the nonparametric quantile regression based on the measurement error model (MEM). The “false” Gaussian measurement error is forced into the covariates to construct a nonparametric quantile regression loss function with the MEM framework. Under this MEM framework, the variable selection procedure is completed, and the asymptotic normality of the estimates and the consistency of variable selection are verified. Some Monte Carlo simulations and a real data application are conducted to evaluate the performance of the proposed procedure.
ISSN:0932-5026
1613-9798
DOI:10.1007/s00362-022-01376-y