Short-term heat stress assays resolve effects of host strain, repeat stress, and bacterial inoculation on Aiptasia thermal tolerance phenotypes

The ongoing loss of corals and their reef ecosystems hastens the need to develop approaches that mitigate the impacts of climate change. Given the strong reliance of corals on their associated prokaryotic and microalgal symbionts, microbiome-targeted interventions in the form of probiotics or microb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coral reefs 2023-12, Vol.42 (6), p.1271-1281
Hauptverfasser: Dörr, Melanie, Denger, Julia, Maier, Céline S., Kirsch, Jana V., Manns, Hannah, Voolstra, Christian R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1281
container_issue 6
container_start_page 1271
container_title Coral reefs
container_volume 42
creator Dörr, Melanie
Denger, Julia
Maier, Céline S.
Kirsch, Jana V.
Manns, Hannah
Voolstra, Christian R.
description The ongoing loss of corals and their reef ecosystems hastens the need to develop approaches that mitigate the impacts of climate change. Given the strong reliance of corals on their associated prokaryotic and microalgal symbionts, microbiome-targeted interventions in the form of probiotics or microbiome transplants are emerging as potential solutions. Although inoculation with beneficial microorganisms was shown to improve coral bleaching recovery, the mechanistic underpinnings and extent to which microbiomes can be manipulated are largely unknown. Research progress in this regard is often hindered by coral holobiont complexity and a lack of standardized diagnostics to assess physiological and phenotypic changes following microbial manipulation. Here we address these shortcomings by establishing short-term acute thermal stress assays using the Coral Bleaching Automated Stress System (CBASS) as a standardized and reproducible experimental platform to assess stress tolerance phenotypes of the coral model Aiptasia. We show that thermal tolerance phenotypes following acute heat stress assays are highly reproducible, host species-specific, and can exert legacy effects with consequences for long-term thermal resilience. We further demonstrate the ability to resolve phenotypic differences in thermal tolerance following incubation with the coral bleaching pathogen Vibrio coralliilyticus , providing an avenue for screening bacteria for their ability to affect holobiont thermal performance. By employing acute heat stress assays in conjunction with a tractable model organism, we posit CBASS assays as a standardized experimental platform that allows functional screening for microbes that affect thermal stress tolerance. Such effort may accelerate the discovery of microbes and microbial mechanisms mediating thermal tolerance and our ability to harness them to increase stress resilience.
doi_str_mv 10.1007/s00338-023-02427-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2895541738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895541738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e1a5afbb752ba604fb48473b5f8e21f32fbccaaa52e9b16be0c74f22dea6f4233</originalsourceid><addsrcrecordid>eNp9UMtKxTAQDaLg9fEDrgJuraZ53PYuRXyB4EJdh0mc2EptaiZX6Ff4y0av4E6YYQbOCw5jR7U4rYVozkgIpdpKSFVWy6aat9ii1kpWYtWYbbYQjZSVFrLdZXtEr0IIY1ZqwT4fuphylTG98Q4hc8oJiTgQwUy8_HH4QI4hoM_EY-BdpB8W9ONJwac_0QmH8Zk78MWth4H3Y_TrAXIfR17mvJ8yUA88dyWt4DkOmGD0yKcOx5jnCemA7QQYCA9_7z57urp8vLip7u6vby_O7yqvlipXWIOB4FxjpIOl0MHpVjfKmdCirIOSwXkPAEbiytVLh8I3Okj5jLAMWiq1z443vlOK72ukbF_jOo0l0sp2ZYyuG9UWltywfIpECYOdUv8Gaba1sN_F203xthRvf4q3cxGpjYgKeXzB9Gf9j-oLitSLMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895541738</pqid></control><display><type>article</type><title>Short-term heat stress assays resolve effects of host strain, repeat stress, and bacterial inoculation on Aiptasia thermal tolerance phenotypes</title><source>SpringerLink Journals</source><creator>Dörr, Melanie ; Denger, Julia ; Maier, Céline S. ; Kirsch, Jana V. ; Manns, Hannah ; Voolstra, Christian R.</creator><creatorcontrib>Dörr, Melanie ; Denger, Julia ; Maier, Céline S. ; Kirsch, Jana V. ; Manns, Hannah ; Voolstra, Christian R.</creatorcontrib><description>The ongoing loss of corals and their reef ecosystems hastens the need to develop approaches that mitigate the impacts of climate change. Given the strong reliance of corals on their associated prokaryotic and microalgal symbionts, microbiome-targeted interventions in the form of probiotics or microbiome transplants are emerging as potential solutions. Although inoculation with beneficial microorganisms was shown to improve coral bleaching recovery, the mechanistic underpinnings and extent to which microbiomes can be manipulated are largely unknown. Research progress in this regard is often hindered by coral holobiont complexity and a lack of standardized diagnostics to assess physiological and phenotypic changes following microbial manipulation. Here we address these shortcomings by establishing short-term acute thermal stress assays using the Coral Bleaching Automated Stress System (CBASS) as a standardized and reproducible experimental platform to assess stress tolerance phenotypes of the coral model Aiptasia. We show that thermal tolerance phenotypes following acute heat stress assays are highly reproducible, host species-specific, and can exert legacy effects with consequences for long-term thermal resilience. We further demonstrate the ability to resolve phenotypic differences in thermal tolerance following incubation with the coral bleaching pathogen Vibrio coralliilyticus , providing an avenue for screening bacteria for their ability to affect holobiont thermal performance. By employing acute heat stress assays in conjunction with a tractable model organism, we posit CBASS assays as a standardized experimental platform that allows functional screening for microbes that affect thermal stress tolerance. Such effort may accelerate the discovery of microbes and microbial mechanisms mediating thermal tolerance and our ability to harness them to increase stress resilience.</description><identifier>ISSN: 0722-4028</identifier><identifier>EISSN: 1432-0975</identifier><identifier>DOI: 10.1007/s00338-023-02427-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aiptasia ; Algae ; Assaying ; Automation ; Bacteria ; Biomedical and Life Sciences ; Climate change ; Coral bleaching ; Coral reefs ; Corals ; Environmental impact ; Freshwater &amp; Marine Ecology ; Heat ; Heat stress ; Heat tolerance ; Immunological tolerance ; Inoculation ; Life Sciences ; Microbiomes ; Microorganisms ; Oceanography ; Pathogens ; Phenotypes ; Probiotics ; Resilience ; Screening ; Symbionts ; Temperature effects ; Temperature tolerance ; Thermal stress ; Transplants ; Yeast</subject><ispartof>Coral reefs, 2023-12, Vol.42 (6), p.1271-1281</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-e1a5afbb752ba604fb48473b5f8e21f32fbccaaa52e9b16be0c74f22dea6f4233</citedby><cites>FETCH-LOGICAL-c363t-e1a5afbb752ba604fb48473b5f8e21f32fbccaaa52e9b16be0c74f22dea6f4233</cites><orcidid>0009-0001-2254-1591 ; 0000-0002-8710-2194 ; 0009-0005-4194-837X ; 0009-0005-9331-0271 ; 0000-0003-4555-3795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00338-023-02427-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00338-023-02427-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dörr, Melanie</creatorcontrib><creatorcontrib>Denger, Julia</creatorcontrib><creatorcontrib>Maier, Céline S.</creatorcontrib><creatorcontrib>Kirsch, Jana V.</creatorcontrib><creatorcontrib>Manns, Hannah</creatorcontrib><creatorcontrib>Voolstra, Christian R.</creatorcontrib><title>Short-term heat stress assays resolve effects of host strain, repeat stress, and bacterial inoculation on Aiptasia thermal tolerance phenotypes</title><title>Coral reefs</title><addtitle>Coral Reefs</addtitle><description>The ongoing loss of corals and their reef ecosystems hastens the need to develop approaches that mitigate the impacts of climate change. Given the strong reliance of corals on their associated prokaryotic and microalgal symbionts, microbiome-targeted interventions in the form of probiotics or microbiome transplants are emerging as potential solutions. Although inoculation with beneficial microorganisms was shown to improve coral bleaching recovery, the mechanistic underpinnings and extent to which microbiomes can be manipulated are largely unknown. Research progress in this regard is often hindered by coral holobiont complexity and a lack of standardized diagnostics to assess physiological and phenotypic changes following microbial manipulation. Here we address these shortcomings by establishing short-term acute thermal stress assays using the Coral Bleaching Automated Stress System (CBASS) as a standardized and reproducible experimental platform to assess stress tolerance phenotypes of the coral model Aiptasia. We show that thermal tolerance phenotypes following acute heat stress assays are highly reproducible, host species-specific, and can exert legacy effects with consequences for long-term thermal resilience. We further demonstrate the ability to resolve phenotypic differences in thermal tolerance following incubation with the coral bleaching pathogen Vibrio coralliilyticus , providing an avenue for screening bacteria for their ability to affect holobiont thermal performance. By employing acute heat stress assays in conjunction with a tractable model organism, we posit CBASS assays as a standardized experimental platform that allows functional screening for microbes that affect thermal stress tolerance. Such effort may accelerate the discovery of microbes and microbial mechanisms mediating thermal tolerance and our ability to harness them to increase stress resilience.</description><subject>Aiptasia</subject><subject>Algae</subject><subject>Assaying</subject><subject>Automation</subject><subject>Bacteria</subject><subject>Biomedical and Life Sciences</subject><subject>Climate change</subject><subject>Coral bleaching</subject><subject>Coral reefs</subject><subject>Corals</subject><subject>Environmental impact</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Heat</subject><subject>Heat stress</subject><subject>Heat tolerance</subject><subject>Immunological tolerance</subject><subject>Inoculation</subject><subject>Life Sciences</subject><subject>Microbiomes</subject><subject>Microorganisms</subject><subject>Oceanography</subject><subject>Pathogens</subject><subject>Phenotypes</subject><subject>Probiotics</subject><subject>Resilience</subject><subject>Screening</subject><subject>Symbionts</subject><subject>Temperature effects</subject><subject>Temperature tolerance</subject><subject>Thermal stress</subject><subject>Transplants</subject><subject>Yeast</subject><issn>0722-4028</issn><issn>1432-0975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UMtKxTAQDaLg9fEDrgJuraZ53PYuRXyB4EJdh0mc2EptaiZX6Ff4y0av4E6YYQbOCw5jR7U4rYVozkgIpdpKSFVWy6aat9ii1kpWYtWYbbYQjZSVFrLdZXtEr0IIY1ZqwT4fuphylTG98Q4hc8oJiTgQwUy8_HH4QI4hoM_EY-BdpB8W9ONJwac_0QmH8Zk78MWth4H3Y_TrAXIfR17mvJ8yUA88dyWt4DkOmGD0yKcOx5jnCemA7QQYCA9_7z57urp8vLip7u6vby_O7yqvlipXWIOB4FxjpIOl0MHpVjfKmdCirIOSwXkPAEbiytVLh8I3Okj5jLAMWiq1z443vlOK72ukbF_jOo0l0sp2ZYyuG9UWltywfIpECYOdUv8Gaba1sN_F203xthRvf4q3cxGpjYgKeXzB9Gf9j-oLitSLMg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Dörr, Melanie</creator><creator>Denger, Julia</creator><creator>Maier, Céline S.</creator><creator>Kirsch, Jana V.</creator><creator>Manns, Hannah</creator><creator>Voolstra, Christian R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T7</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0009-0001-2254-1591</orcidid><orcidid>https://orcid.org/0000-0002-8710-2194</orcidid><orcidid>https://orcid.org/0009-0005-4194-837X</orcidid><orcidid>https://orcid.org/0009-0005-9331-0271</orcidid><orcidid>https://orcid.org/0000-0003-4555-3795</orcidid></search><sort><creationdate>20231201</creationdate><title>Short-term heat stress assays resolve effects of host strain, repeat stress, and bacterial inoculation on Aiptasia thermal tolerance phenotypes</title><author>Dörr, Melanie ; Denger, Julia ; Maier, Céline S. ; Kirsch, Jana V. ; Manns, Hannah ; Voolstra, Christian R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e1a5afbb752ba604fb48473b5f8e21f32fbccaaa52e9b16be0c74f22dea6f4233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aiptasia</topic><topic>Algae</topic><topic>Assaying</topic><topic>Automation</topic><topic>Bacteria</topic><topic>Biomedical and Life Sciences</topic><topic>Climate change</topic><topic>Coral bleaching</topic><topic>Coral reefs</topic><topic>Corals</topic><topic>Environmental impact</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Heat</topic><topic>Heat stress</topic><topic>Heat tolerance</topic><topic>Immunological tolerance</topic><topic>Inoculation</topic><topic>Life Sciences</topic><topic>Microbiomes</topic><topic>Microorganisms</topic><topic>Oceanography</topic><topic>Pathogens</topic><topic>Phenotypes</topic><topic>Probiotics</topic><topic>Resilience</topic><topic>Screening</topic><topic>Symbionts</topic><topic>Temperature effects</topic><topic>Temperature tolerance</topic><topic>Thermal stress</topic><topic>Transplants</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dörr, Melanie</creatorcontrib><creatorcontrib>Denger, Julia</creatorcontrib><creatorcontrib>Maier, Céline S.</creatorcontrib><creatorcontrib>Kirsch, Jana V.</creatorcontrib><creatorcontrib>Manns, Hannah</creatorcontrib><creatorcontrib>Voolstra, Christian R.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Coral reefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dörr, Melanie</au><au>Denger, Julia</au><au>Maier, Céline S.</au><au>Kirsch, Jana V.</au><au>Manns, Hannah</au><au>Voolstra, Christian R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-term heat stress assays resolve effects of host strain, repeat stress, and bacterial inoculation on Aiptasia thermal tolerance phenotypes</atitle><jtitle>Coral reefs</jtitle><stitle>Coral Reefs</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>42</volume><issue>6</issue><spage>1271</spage><epage>1281</epage><pages>1271-1281</pages><issn>0722-4028</issn><eissn>1432-0975</eissn><abstract>The ongoing loss of corals and their reef ecosystems hastens the need to develop approaches that mitigate the impacts of climate change. Given the strong reliance of corals on their associated prokaryotic and microalgal symbionts, microbiome-targeted interventions in the form of probiotics or microbiome transplants are emerging as potential solutions. Although inoculation with beneficial microorganisms was shown to improve coral bleaching recovery, the mechanistic underpinnings and extent to which microbiomes can be manipulated are largely unknown. Research progress in this regard is often hindered by coral holobiont complexity and a lack of standardized diagnostics to assess physiological and phenotypic changes following microbial manipulation. Here we address these shortcomings by establishing short-term acute thermal stress assays using the Coral Bleaching Automated Stress System (CBASS) as a standardized and reproducible experimental platform to assess stress tolerance phenotypes of the coral model Aiptasia. We show that thermal tolerance phenotypes following acute heat stress assays are highly reproducible, host species-specific, and can exert legacy effects with consequences for long-term thermal resilience. We further demonstrate the ability to resolve phenotypic differences in thermal tolerance following incubation with the coral bleaching pathogen Vibrio coralliilyticus , providing an avenue for screening bacteria for their ability to affect holobiont thermal performance. By employing acute heat stress assays in conjunction with a tractable model organism, we posit CBASS assays as a standardized experimental platform that allows functional screening for microbes that affect thermal stress tolerance. Such effort may accelerate the discovery of microbes and microbial mechanisms mediating thermal tolerance and our ability to harness them to increase stress resilience.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00338-023-02427-y</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0001-2254-1591</orcidid><orcidid>https://orcid.org/0000-0002-8710-2194</orcidid><orcidid>https://orcid.org/0009-0005-4194-837X</orcidid><orcidid>https://orcid.org/0009-0005-9331-0271</orcidid><orcidid>https://orcid.org/0000-0003-4555-3795</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0722-4028
ispartof Coral reefs, 2023-12, Vol.42 (6), p.1271-1281
issn 0722-4028
1432-0975
language eng
recordid cdi_proquest_journals_2895541738
source SpringerLink Journals
subjects Aiptasia
Algae
Assaying
Automation
Bacteria
Biomedical and Life Sciences
Climate change
Coral bleaching
Coral reefs
Corals
Environmental impact
Freshwater & Marine Ecology
Heat
Heat stress
Heat tolerance
Immunological tolerance
Inoculation
Life Sciences
Microbiomes
Microorganisms
Oceanography
Pathogens
Phenotypes
Probiotics
Resilience
Screening
Symbionts
Temperature effects
Temperature tolerance
Thermal stress
Transplants
Yeast
title Short-term heat stress assays resolve effects of host strain, repeat stress, and bacterial inoculation on Aiptasia thermal tolerance phenotypes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A03%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-term%20heat%20stress%20assays%20resolve%20effects%20of%20host%20strain,%20repeat%20stress,%20and%20bacterial%20inoculation%20on%20Aiptasia%20thermal%20tolerance%20phenotypes&rft.jtitle=Coral%20reefs&rft.au=D%C3%B6rr,%20Melanie&rft.date=2023-12-01&rft.volume=42&rft.issue=6&rft.spage=1271&rft.epage=1281&rft.pages=1271-1281&rft.issn=0722-4028&rft.eissn=1432-0975&rft_id=info:doi/10.1007/s00338-023-02427-y&rft_dat=%3Cproquest_cross%3E2895541738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895541738&rft_id=info:pmid/&rfr_iscdi=true