Robustness of a truncated estimator for the smaller of two ordered means

In this note, we consider the problem of estimating the smaller of two ordered means. Such problems frequently arise in applications where, for example, aggregated data are observed. In order to combine information from direct and indirect observations, we use the Stein-type truncated estimator. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical papers (Berlin, Germany) Germany), 2023-12, Vol.64 (6), p.2225-2244
Hauptverfasser: Hamura, Yasuyuki, Kubokawa, Tatsuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2244
container_issue 6
container_start_page 2225
container_title Statistical papers (Berlin, Germany)
container_volume 64
creator Hamura, Yasuyuki
Kubokawa, Tatsuya
description In this note, we consider the problem of estimating the smaller of two ordered means. Such problems frequently arise in applications where, for example, aggregated data are observed. In order to combine information from direct and indirect observations, we use the Stein-type truncated estimator. We show that it dominates the direct estimator for distributions with log-concave or log-convex densities.
doi_str_mv 10.1007/s00362-022-01371-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2895541607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895541607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-2defbe72da66a3b51542c78f4577463357da0e1be1d062538c2ad8372992f6d3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAc3SSbP7sUYpaoSBI7yG7SdTSbmqSRfz2pl3Bm4fHXH7vzcxD6JrCLQVQdxmAS0aAVVGuKOEnaEYl5aRVrT5FM2g5IwKYPEcXOW8AqNYaZmj5Grsxl8HnjGPAFpc0Dr0t3mGfy8fOlphwqCrvHued3W59OoDlK-KYnE8V3Hk75Et0Fuw2-6vfOUfrx4f1YklWL0_Pi_sV6RuqC2HOh84r5qyUlneCiob1SodGKNVIzoVyFjztPHUgmeC6Z9ZprljbsiAdn6ObKXaf4udYTzSbOKahbjRMt0I0VIKqFJuoPsWckw9mn-ov6dtQMIfCzFSYqYWZY2GGVxOfTLnCw5tPf9H_uH4AWmJtTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895541607</pqid></control><display><type>article</type><title>Robustness of a truncated estimator for the smaller of two ordered means</title><source>SpringerLink Journals</source><source>Business Source Complete</source><creator>Hamura, Yasuyuki ; Kubokawa, Tatsuya</creator><creatorcontrib>Hamura, Yasuyuki ; Kubokawa, Tatsuya</creatorcontrib><description>In this note, we consider the problem of estimating the smaller of two ordered means. Such problems frequently arise in applications where, for example, aggregated data are observed. In order to combine information from direct and indirect observations, we use the Stein-type truncated estimator. We show that it dominates the direct estimator for distributions with log-concave or log-convex densities.</description><identifier>ISSN: 0932-5026</identifier><identifier>EISSN: 1613-9798</identifier><identifier>DOI: 10.1007/s00362-022-01371-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Finance ; Insurance ; Management ; Mathematics and Statistics ; Operations Research/Decision Theory ; Probability Theory and Stochastic Processes ; Short Communication ; Statistics ; Statistics for Business</subject><ispartof>Statistical papers (Berlin, Germany), 2023-12, Vol.64 (6), p.2225-2244</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-2defbe72da66a3b51542c78f4577463357da0e1be1d062538c2ad8372992f6d3</citedby><cites>FETCH-LOGICAL-c418t-2defbe72da66a3b51542c78f4577463357da0e1be1d062538c2ad8372992f6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00362-022-01371-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00362-022-01371-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hamura, Yasuyuki</creatorcontrib><creatorcontrib>Kubokawa, Tatsuya</creatorcontrib><title>Robustness of a truncated estimator for the smaller of two ordered means</title><title>Statistical papers (Berlin, Germany)</title><addtitle>Stat Papers</addtitle><description>In this note, we consider the problem of estimating the smaller of two ordered means. Such problems frequently arise in applications where, for example, aggregated data are observed. In order to combine information from direct and indirect observations, we use the Stein-type truncated estimator. We show that it dominates the direct estimator for distributions with log-concave or log-convex densities.</description><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Short Communication</subject><subject>Statistics</subject><subject>Statistics for Business</subject><issn>0932-5026</issn><issn>1613-9798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAc3SSbP7sUYpaoSBI7yG7SdTSbmqSRfz2pl3Bm4fHXH7vzcxD6JrCLQVQdxmAS0aAVVGuKOEnaEYl5aRVrT5FM2g5IwKYPEcXOW8AqNYaZmj5Grsxl8HnjGPAFpc0Dr0t3mGfy8fOlphwqCrvHued3W59OoDlK-KYnE8V3Hk75Et0Fuw2-6vfOUfrx4f1YklWL0_Pi_sV6RuqC2HOh84r5qyUlneCiob1SodGKNVIzoVyFjztPHUgmeC6Z9ZprljbsiAdn6ObKXaf4udYTzSbOKahbjRMt0I0VIKqFJuoPsWckw9mn-ov6dtQMIfCzFSYqYWZY2GGVxOfTLnCw5tPf9H_uH4AWmJtTA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Hamura, Yasuyuki</creator><creator>Kubokawa, Tatsuya</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20231201</creationdate><title>Robustness of a truncated estimator for the smaller of two ordered means</title><author>Hamura, Yasuyuki ; Kubokawa, Tatsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-2defbe72da66a3b51542c78f4577463357da0e1be1d062538c2ad8372992f6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Short Communication</topic><topic>Statistics</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamura, Yasuyuki</creatorcontrib><creatorcontrib>Kubokawa, Tatsuya</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Statistical papers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamura, Yasuyuki</au><au>Kubokawa, Tatsuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robustness of a truncated estimator for the smaller of two ordered means</atitle><jtitle>Statistical papers (Berlin, Germany)</jtitle><stitle>Stat Papers</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>64</volume><issue>6</issue><spage>2225</spage><epage>2244</epage><pages>2225-2244</pages><issn>0932-5026</issn><eissn>1613-9798</eissn><abstract>In this note, we consider the problem of estimating the smaller of two ordered means. Such problems frequently arise in applications where, for example, aggregated data are observed. In order to combine information from direct and indirect observations, we use the Stein-type truncated estimator. We show that it dominates the direct estimator for distributions with log-concave or log-convex densities.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00362-022-01371-3</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0932-5026
ispartof Statistical papers (Berlin, Germany), 2023-12, Vol.64 (6), p.2225-2244
issn 0932-5026
1613-9798
language eng
recordid cdi_proquest_journals_2895541607
source SpringerLink Journals; Business Source Complete
subjects Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Finance
Insurance
Management
Mathematics and Statistics
Operations Research/Decision Theory
Probability Theory and Stochastic Processes
Short Communication
Statistics
Statistics for Business
title Robustness of a truncated estimator for the smaller of two ordered means
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A02%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robustness%20of%20a%20truncated%20estimator%20for%20the%20smaller%20of%20two%20ordered%20means&rft.jtitle=Statistical%20papers%20(Berlin,%20Germany)&rft.au=Hamura,%20Yasuyuki&rft.date=2023-12-01&rft.volume=64&rft.issue=6&rft.spage=2225&rft.epage=2244&rft.pages=2225-2244&rft.issn=0932-5026&rft.eissn=1613-9798&rft_id=info:doi/10.1007/s00362-022-01371-3&rft_dat=%3Cproquest_cross%3E2895541607%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895541607&rft_id=info:pmid/&rfr_iscdi=true