Robustness of a truncated estimator for the smaller of two ordered means
In this note, we consider the problem of estimating the smaller of two ordered means. Such problems frequently arise in applications where, for example, aggregated data are observed. In order to combine information from direct and indirect observations, we use the Stein-type truncated estimator. We...
Gespeichert in:
Veröffentlicht in: | Statistical papers (Berlin, Germany) Germany), 2023-12, Vol.64 (6), p.2225-2244 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2244 |
---|---|
container_issue | 6 |
container_start_page | 2225 |
container_title | Statistical papers (Berlin, Germany) |
container_volume | 64 |
creator | Hamura, Yasuyuki Kubokawa, Tatsuya |
description | In this note, we consider the problem of estimating the smaller of two ordered means. Such problems frequently arise in applications where, for example, aggregated data are observed. In order to combine information from direct and indirect observations, we use the Stein-type truncated estimator. We show that it dominates the direct estimator for distributions with log-concave or log-convex densities. |
doi_str_mv | 10.1007/s00362-022-01371-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2895541607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895541607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-2defbe72da66a3b51542c78f4577463357da0e1be1d062538c2ad8372992f6d3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAc3SSbP7sUYpaoSBI7yG7SdTSbmqSRfz2pl3Bm4fHXH7vzcxD6JrCLQVQdxmAS0aAVVGuKOEnaEYl5aRVrT5FM2g5IwKYPEcXOW8AqNYaZmj5Grsxl8HnjGPAFpc0Dr0t3mGfy8fOlphwqCrvHued3W59OoDlK-KYnE8V3Hk75Et0Fuw2-6vfOUfrx4f1YklWL0_Pi_sV6RuqC2HOh84r5qyUlneCiob1SodGKNVIzoVyFjztPHUgmeC6Z9ZprljbsiAdn6ObKXaf4udYTzSbOKahbjRMt0I0VIKqFJuoPsWckw9mn-ov6dtQMIfCzFSYqYWZY2GGVxOfTLnCw5tPf9H_uH4AWmJtTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895541607</pqid></control><display><type>article</type><title>Robustness of a truncated estimator for the smaller of two ordered means</title><source>SpringerLink Journals</source><source>Business Source Complete</source><creator>Hamura, Yasuyuki ; Kubokawa, Tatsuya</creator><creatorcontrib>Hamura, Yasuyuki ; Kubokawa, Tatsuya</creatorcontrib><description>In this note, we consider the problem of estimating the smaller of two ordered means. Such problems frequently arise in applications where, for example, aggregated data are observed. In order to combine information from direct and indirect observations, we use the Stein-type truncated estimator. We show that it dominates the direct estimator for distributions with log-concave or log-convex densities.</description><identifier>ISSN: 0932-5026</identifier><identifier>EISSN: 1613-9798</identifier><identifier>DOI: 10.1007/s00362-022-01371-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Finance ; Insurance ; Management ; Mathematics and Statistics ; Operations Research/Decision Theory ; Probability Theory and Stochastic Processes ; Short Communication ; Statistics ; Statistics for Business</subject><ispartof>Statistical papers (Berlin, Germany), 2023-12, Vol.64 (6), p.2225-2244</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-2defbe72da66a3b51542c78f4577463357da0e1be1d062538c2ad8372992f6d3</citedby><cites>FETCH-LOGICAL-c418t-2defbe72da66a3b51542c78f4577463357da0e1be1d062538c2ad8372992f6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00362-022-01371-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00362-022-01371-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hamura, Yasuyuki</creatorcontrib><creatorcontrib>Kubokawa, Tatsuya</creatorcontrib><title>Robustness of a truncated estimator for the smaller of two ordered means</title><title>Statistical papers (Berlin, Germany)</title><addtitle>Stat Papers</addtitle><description>In this note, we consider the problem of estimating the smaller of two ordered means. Such problems frequently arise in applications where, for example, aggregated data are observed. In order to combine information from direct and indirect observations, we use the Stein-type truncated estimator. We show that it dominates the direct estimator for distributions with log-concave or log-convex densities.</description><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Short Communication</subject><subject>Statistics</subject><subject>Statistics for Business</subject><issn>0932-5026</issn><issn>1613-9798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAc3SSbP7sUYpaoSBI7yG7SdTSbmqSRfz2pl3Bm4fHXH7vzcxD6JrCLQVQdxmAS0aAVVGuKOEnaEYl5aRVrT5FM2g5IwKYPEcXOW8AqNYaZmj5Grsxl8HnjGPAFpc0Dr0t3mGfy8fOlphwqCrvHued3W59OoDlK-KYnE8V3Hk75Et0Fuw2-6vfOUfrx4f1YklWL0_Pi_sV6RuqC2HOh84r5qyUlneCiob1SodGKNVIzoVyFjztPHUgmeC6Z9ZprljbsiAdn6ObKXaf4udYTzSbOKahbjRMt0I0VIKqFJuoPsWckw9mn-ov6dtQMIfCzFSYqYWZY2GGVxOfTLnCw5tPf9H_uH4AWmJtTA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Hamura, Yasuyuki</creator><creator>Kubokawa, Tatsuya</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20231201</creationdate><title>Robustness of a truncated estimator for the smaller of two ordered means</title><author>Hamura, Yasuyuki ; Kubokawa, Tatsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-2defbe72da66a3b51542c78f4577463357da0e1be1d062538c2ad8372992f6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Short Communication</topic><topic>Statistics</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamura, Yasuyuki</creatorcontrib><creatorcontrib>Kubokawa, Tatsuya</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Statistical papers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamura, Yasuyuki</au><au>Kubokawa, Tatsuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robustness of a truncated estimator for the smaller of two ordered means</atitle><jtitle>Statistical papers (Berlin, Germany)</jtitle><stitle>Stat Papers</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>64</volume><issue>6</issue><spage>2225</spage><epage>2244</epage><pages>2225-2244</pages><issn>0932-5026</issn><eissn>1613-9798</eissn><abstract>In this note, we consider the problem of estimating the smaller of two ordered means. Such problems frequently arise in applications where, for example, aggregated data are observed. In order to combine information from direct and indirect observations, we use the Stein-type truncated estimator. We show that it dominates the direct estimator for distributions with log-concave or log-convex densities.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00362-022-01371-3</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-5026 |
ispartof | Statistical papers (Berlin, Germany), 2023-12, Vol.64 (6), p.2225-2244 |
issn | 0932-5026 1613-9798 |
language | eng |
recordid | cdi_proquest_journals_2895541607 |
source | SpringerLink Journals; Business Source Complete |
subjects | Economic Theory/Quantitative Economics/Mathematical Methods Economics Finance Insurance Management Mathematics and Statistics Operations Research/Decision Theory Probability Theory and Stochastic Processes Short Communication Statistics Statistics for Business |
title | Robustness of a truncated estimator for the smaller of two ordered means |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A02%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robustness%20of%20a%20truncated%20estimator%20for%20the%20smaller%20of%20two%20ordered%20means&rft.jtitle=Statistical%20papers%20(Berlin,%20Germany)&rft.au=Hamura,%20Yasuyuki&rft.date=2023-12-01&rft.volume=64&rft.issue=6&rft.spage=2225&rft.epage=2244&rft.pages=2225-2244&rft.issn=0932-5026&rft.eissn=1613-9798&rft_id=info:doi/10.1007/s00362-022-01371-3&rft_dat=%3Cproquest_cross%3E2895541607%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895541607&rft_id=info:pmid/&rfr_iscdi=true |