Wiring surface loss of a superconducting transmon qubit

Quantum processors using superconducting qubits suffer from dielectric loss leading to noise and dissipation. Qubits are usually designed as large capacitor pads connected to a non-linear Josephson junction (or SQUID) by a superconducting thin metal wiring. Here, we report on finite-element simulati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-11
Hauptverfasser: Smirnov, Nikita S, Krivko, Elizaveta A, Solovieva, Anastasiya A, Ivanov, Anton I, Rodionov, Ilya A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Smirnov, Nikita S
Krivko, Elizaveta A
Solovieva, Anastasiya A
Ivanov, Anton I
Rodionov, Ilya A
description Quantum processors using superconducting qubits suffer from dielectric loss leading to noise and dissipation. Qubits are usually designed as large capacitor pads connected to a non-linear Josephson junction (or SQUID) by a superconducting thin metal wiring. Here, we report on finite-element simulation and experimental results confirming that more than 50% of surface loss in transmon qubits can originated from Josephson junctions wiring and can limit qubit relaxation time. Extracting dielectric loss tangents capacitor pads and wiring based on their participation ratios, we show dominant surface loss of wiring can occur for real qubits designs. Then, we simulate a qubit coupled to a bath of individual TLS defects and show that only a small fraction (~18%) of coupled defects is located within the wiring interfaces, however, their coupling strength is much higher due to stronger electromagnetic field. Finally, we fabricate six tunable floating transmon qubits and experimentally demonstrate up to 20% improvement in qubit quality factor by wiring design optimization.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2895040947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895040947</sourcerecordid><originalsourceid>FETCH-proquest_journals_28950409473</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLguxHxMuxbFAwguS4yJpNS8Ni-5vxU8gKuBmVmRigtxaFrJ-YbUiANjjB81V0pURN9DCvFFsSRvrKMjIFLw1CxmcslCfBabv0dOJuIbIp3LI-QdWXszoqt_3JL95Xw7XZspwVwc5n6AkuKSet52iknWSS3-uz4-wDZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895040947</pqid></control><display><type>article</type><title>Wiring surface loss of a superconducting transmon qubit</title><source>Free E- Journals</source><creator>Smirnov, Nikita S ; Krivko, Elizaveta A ; Solovieva, Anastasiya A ; Ivanov, Anton I ; Rodionov, Ilya A</creator><creatorcontrib>Smirnov, Nikita S ; Krivko, Elizaveta A ; Solovieva, Anastasiya A ; Ivanov, Anton I ; Rodionov, Ilya A</creatorcontrib><description>Quantum processors using superconducting qubits suffer from dielectric loss leading to noise and dissipation. Qubits are usually designed as large capacitor pads connected to a non-linear Josephson junction (or SQUID) by a superconducting thin metal wiring. Here, we report on finite-element simulation and experimental results confirming that more than 50% of surface loss in transmon qubits can originated from Josephson junctions wiring and can limit qubit relaxation time. Extracting dielectric loss tangents capacitor pads and wiring based on their participation ratios, we show dominant surface loss of wiring can occur for real qubits designs. Then, we simulate a qubit coupled to a bath of individual TLS defects and show that only a small fraction (~18%) of coupled defects is located within the wiring interfaces, however, their coupling strength is much higher due to stronger electromagnetic field. Finally, we fabricate six tunable floating transmon qubits and experimentally demonstrate up to 20% improvement in qubit quality factor by wiring design optimization.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Capacitors ; Defects ; Design factors ; Design optimization ; Dielectric loss ; Electromagnetic fields ; Finite element method ; Josephson junctions ; Qubits (quantum computing) ; Relaxation time ; Superconducting quantum interference devices ; Superconductivity ; Tangents ; Wiring</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Smirnov, Nikita S</creatorcontrib><creatorcontrib>Krivko, Elizaveta A</creatorcontrib><creatorcontrib>Solovieva, Anastasiya A</creatorcontrib><creatorcontrib>Ivanov, Anton I</creatorcontrib><creatorcontrib>Rodionov, Ilya A</creatorcontrib><title>Wiring surface loss of a superconducting transmon qubit</title><title>arXiv.org</title><description>Quantum processors using superconducting qubits suffer from dielectric loss leading to noise and dissipation. Qubits are usually designed as large capacitor pads connected to a non-linear Josephson junction (or SQUID) by a superconducting thin metal wiring. Here, we report on finite-element simulation and experimental results confirming that more than 50% of surface loss in transmon qubits can originated from Josephson junctions wiring and can limit qubit relaxation time. Extracting dielectric loss tangents capacitor pads and wiring based on their participation ratios, we show dominant surface loss of wiring can occur for real qubits designs. Then, we simulate a qubit coupled to a bath of individual TLS defects and show that only a small fraction (~18%) of coupled defects is located within the wiring interfaces, however, their coupling strength is much higher due to stronger electromagnetic field. Finally, we fabricate six tunable floating transmon qubits and experimentally demonstrate up to 20% improvement in qubit quality factor by wiring design optimization.</description><subject>Capacitors</subject><subject>Defects</subject><subject>Design factors</subject><subject>Design optimization</subject><subject>Dielectric loss</subject><subject>Electromagnetic fields</subject><subject>Finite element method</subject><subject>Josephson junctions</subject><subject>Qubits (quantum computing)</subject><subject>Relaxation time</subject><subject>Superconducting quantum interference devices</subject><subject>Superconductivity</subject><subject>Tangents</subject><subject>Wiring</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLguxHxMuxbFAwguS4yJpNS8Ni-5vxU8gKuBmVmRigtxaFrJ-YbUiANjjB81V0pURN9DCvFFsSRvrKMjIFLw1CxmcslCfBabv0dOJuIbIp3LI-QdWXszoqt_3JL95Xw7XZspwVwc5n6AkuKSet52iknWSS3-uz4-wDZA</recordid><startdate>20231128</startdate><enddate>20231128</enddate><creator>Smirnov, Nikita S</creator><creator>Krivko, Elizaveta A</creator><creator>Solovieva, Anastasiya A</creator><creator>Ivanov, Anton I</creator><creator>Rodionov, Ilya A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231128</creationdate><title>Wiring surface loss of a superconducting transmon qubit</title><author>Smirnov, Nikita S ; Krivko, Elizaveta A ; Solovieva, Anastasiya A ; Ivanov, Anton I ; Rodionov, Ilya A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28950409473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Capacitors</topic><topic>Defects</topic><topic>Design factors</topic><topic>Design optimization</topic><topic>Dielectric loss</topic><topic>Electromagnetic fields</topic><topic>Finite element method</topic><topic>Josephson junctions</topic><topic>Qubits (quantum computing)</topic><topic>Relaxation time</topic><topic>Superconducting quantum interference devices</topic><topic>Superconductivity</topic><topic>Tangents</topic><topic>Wiring</topic><toplevel>online_resources</toplevel><creatorcontrib>Smirnov, Nikita S</creatorcontrib><creatorcontrib>Krivko, Elizaveta A</creatorcontrib><creatorcontrib>Solovieva, Anastasiya A</creatorcontrib><creatorcontrib>Ivanov, Anton I</creatorcontrib><creatorcontrib>Rodionov, Ilya A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smirnov, Nikita S</au><au>Krivko, Elizaveta A</au><au>Solovieva, Anastasiya A</au><au>Ivanov, Anton I</au><au>Rodionov, Ilya A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Wiring surface loss of a superconducting transmon qubit</atitle><jtitle>arXiv.org</jtitle><date>2023-11-28</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Quantum processors using superconducting qubits suffer from dielectric loss leading to noise and dissipation. Qubits are usually designed as large capacitor pads connected to a non-linear Josephson junction (or SQUID) by a superconducting thin metal wiring. Here, we report on finite-element simulation and experimental results confirming that more than 50% of surface loss in transmon qubits can originated from Josephson junctions wiring and can limit qubit relaxation time. Extracting dielectric loss tangents capacitor pads and wiring based on their participation ratios, we show dominant surface loss of wiring can occur for real qubits designs. Then, we simulate a qubit coupled to a bath of individual TLS defects and show that only a small fraction (~18%) of coupled defects is located within the wiring interfaces, however, their coupling strength is much higher due to stronger electromagnetic field. Finally, we fabricate six tunable floating transmon qubits and experimentally demonstrate up to 20% improvement in qubit quality factor by wiring design optimization.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2895040947
source Free E- Journals
subjects Capacitors
Defects
Design factors
Design optimization
Dielectric loss
Electromagnetic fields
Finite element method
Josephson junctions
Qubits (quantum computing)
Relaxation time
Superconducting quantum interference devices
Superconductivity
Tangents
Wiring
title Wiring surface loss of a superconducting transmon qubit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T17%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Wiring%20surface%20loss%20of%20a%20superconducting%20transmon%20qubit&rft.jtitle=arXiv.org&rft.au=Smirnov,%20Nikita%20S&rft.date=2023-11-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2895040947%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895040947&rft_id=info:pmid/&rfr_iscdi=true