Pan Evaporation Prediction Using LSTM Models Based on PCA Factor Reduction and Firefly Optimization Algorithm

Evaporation is an important part of the moisture exchange between the earth and the air. Understanding the trend of pan evaporation can help to reveal the status of actual evaporation, which is very useful for the allocation of regional water resources. However, long short-term memory (LSTM) has bec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on miniaturization for air and space systems 2023-12, Vol.4 (4), p.416-422
Hauptverfasser: Wang, Chuanli, Li, Tianyu, Xin, Dongjun, Wang, Qian, Chen, Ran, Cao, Chaoyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 422
container_issue 4
container_start_page 416
container_title IEEE journal on miniaturization for air and space systems
container_volume 4
creator Wang, Chuanli
Li, Tianyu
Xin, Dongjun
Wang, Qian
Chen, Ran
Cao, Chaoyi
description Evaporation is an important part of the moisture exchange between the earth and the air. Understanding the trend of pan evaporation can help to reveal the status of actual evaporation, which is very useful for the allocation of regional water resources. However, long short-term memory (LSTM) has become a mainstream algorithm for predicting pan evaporation, there are two issues worth considering. One of the issues is how to automatically find the optimal hyperparameters, the other is how to eliminate the correlation between prediction factors to improve prediction performance. To address the two issues, this article proposes LSTM models based on principal component analysis (PCA) factor reduction and firefly optimization algorithm. In the proposed model, fire-fly algorithm can find the optimal hyperparameters, and PCA can eliminate the correlation between prediction factors. Xiangjiang River Basin, an important Basin for China's water resource management, is selected as a study area, the experimental results are evaluated by root mean square error (RMSE) and the coefficient of determination ( R^{2} ). The results show that the proposed models can successfully predict daily pan evaporation of the study area.
doi_str_mv 10.1109/JMASS.2023.3319579
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2895011399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10263773</ieee_id><sourcerecordid>2895011399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2069-cb9722b127bc9c8552fa6a46d0081412eb8e31a61284c2300a249e7035ddd803</originalsourceid><addsrcrecordid>eNpNkMtuwjAQRa2qlYpafqDqwlLXofY4ieNliqAPgUCFriMnNtQoiVM7VKJf30BYsJpZnHtndBB6oGREKRHPH_N0tRoBATZijIqIiys0gIjHAaNxeH2x36Kh9ztCCJAw4QkMULWUNZ78ysY62Rpb46XTyhSn9cubeotnq_Ucz63Spccv0muFj9Q4xVNZtNbhT632PS9rhafG6U15wIumNZX56zvTcmudab-re3SzkaXXw_O8Q-vpZD1-C2aL1_dxOgsKILEIilxwgJwCzwtRJFEEGxnLMFaEJDSkoPNEMypjCklYACNEQig0JyxSSiWE3aGnvrZx9mevfZvt7N7V3cUMEhERSpkQHQU9VTjrffd21jhTSXfIKMmOYrOT2OwoNjuL7UKPfchorS8CEDPOGfsHBLNzSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895011399</pqid></control><display><type>article</type><title>Pan Evaporation Prediction Using LSTM Models Based on PCA Factor Reduction and Firefly Optimization Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Chuanli ; Li, Tianyu ; Xin, Dongjun ; Wang, Qian ; Chen, Ran ; Cao, Chaoyi</creator><creatorcontrib>Wang, Chuanli ; Li, Tianyu ; Xin, Dongjun ; Wang, Qian ; Chen, Ran ; Cao, Chaoyi</creatorcontrib><description>Evaporation is an important part of the moisture exchange between the earth and the air. Understanding the trend of pan evaporation can help to reveal the status of actual evaporation, which is very useful for the allocation of regional water resources. However, long short-term memory (LSTM) has become a mainstream algorithm for predicting pan evaporation, there are two issues worth considering. One of the issues is how to automatically find the optimal hyperparameters, the other is how to eliminate the correlation between prediction factors to improve prediction performance. To address the two issues, this article proposes LSTM models based on principal component analysis (PCA) factor reduction and firefly optimization algorithm. In the proposed model, fire-fly algorithm can find the optimal hyperparameters, and PCA can eliminate the correlation between prediction factors. Xiangjiang River Basin, an important Basin for China's water resource management, is selected as a study area, the experimental results are evaluated by root mean square error (RMSE) and the coefficient of determination (&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;R^{2} &lt;/tex-math&gt;&lt;/inline-formula&gt;). The results show that the proposed models can successfully predict daily pan evaporation of the study area.</description><identifier>ISSN: 2576-3164</identifier><identifier>EISSN: 2576-3164</identifier><identifier>DOI: 10.1109/JMASS.2023.3319579</identifier><identifier>CODEN: IJMAJI</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Atmospheric measurements ; Evaporation ; Evaporation prediction ; firefly algorithm (FA) ; Logic gates ; Long short term memory ; long short-term memory (LSTM) networks ; Optimization ; Optimization algorithms ; Optimization methods ; pan evaporation ; Prediction algorithms ; Predictive models ; Principal component analysis ; Principal components analysis ; principal components analysis (PCA) ; Reduction ; River basins ; Rivers ; Root-mean-square errors ; Water resources ; Water resources management</subject><ispartof>IEEE journal on miniaturization for air and space systems, 2023-12, Vol.4 (4), p.416-422</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2069-cb9722b127bc9c8552fa6a46d0081412eb8e31a61284c2300a249e7035ddd803</cites><orcidid>0009-0004-0620-4618 ; 0000-0002-8015-3028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10263773$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids></links><search><creatorcontrib>Wang, Chuanli</creatorcontrib><creatorcontrib>Li, Tianyu</creatorcontrib><creatorcontrib>Xin, Dongjun</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Chen, Ran</creatorcontrib><creatorcontrib>Cao, Chaoyi</creatorcontrib><title>Pan Evaporation Prediction Using LSTM Models Based on PCA Factor Reduction and Firefly Optimization Algorithm</title><title>IEEE journal on miniaturization for air and space systems</title><addtitle>JMASS</addtitle><description>Evaporation is an important part of the moisture exchange between the earth and the air. Understanding the trend of pan evaporation can help to reveal the status of actual evaporation, which is very useful for the allocation of regional water resources. However, long short-term memory (LSTM) has become a mainstream algorithm for predicting pan evaporation, there are two issues worth considering. One of the issues is how to automatically find the optimal hyperparameters, the other is how to eliminate the correlation between prediction factors to improve prediction performance. To address the two issues, this article proposes LSTM models based on principal component analysis (PCA) factor reduction and firefly optimization algorithm. In the proposed model, fire-fly algorithm can find the optimal hyperparameters, and PCA can eliminate the correlation between prediction factors. Xiangjiang River Basin, an important Basin for China's water resource management, is selected as a study area, the experimental results are evaluated by root mean square error (RMSE) and the coefficient of determination (&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;R^{2} &lt;/tex-math&gt;&lt;/inline-formula&gt;). The results show that the proposed models can successfully predict daily pan evaporation of the study area.</description><subject>Algorithms</subject><subject>Atmospheric measurements</subject><subject>Evaporation</subject><subject>Evaporation prediction</subject><subject>firefly algorithm (FA)</subject><subject>Logic gates</subject><subject>Long short term memory</subject><subject>long short-term memory (LSTM) networks</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Optimization methods</subject><subject>pan evaporation</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Principal component analysis</subject><subject>Principal components analysis</subject><subject>principal components analysis (PCA)</subject><subject>Reduction</subject><subject>River basins</subject><subject>Rivers</subject><subject>Root-mean-square errors</subject><subject>Water resources</subject><subject>Water resources management</subject><issn>2576-3164</issn><issn>2576-3164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMtuwjAQRa2qlYpafqDqwlLXofY4ieNliqAPgUCFriMnNtQoiVM7VKJf30BYsJpZnHtndBB6oGREKRHPH_N0tRoBATZijIqIiys0gIjHAaNxeH2x36Kh9ztCCJAw4QkMULWUNZ78ysY62Rpb46XTyhSn9cubeotnq_Ucz63Spccv0muFj9Q4xVNZtNbhT632PS9rhafG6U15wIumNZX56zvTcmudab-re3SzkaXXw_O8Q-vpZD1-C2aL1_dxOgsKILEIilxwgJwCzwtRJFEEGxnLMFaEJDSkoPNEMypjCklYACNEQig0JyxSSiWE3aGnvrZx9mevfZvt7N7V3cUMEhERSpkQHQU9VTjrffd21jhTSXfIKMmOYrOT2OwoNjuL7UKPfchorS8CEDPOGfsHBLNzSQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Wang, Chuanli</creator><creator>Li, Tianyu</creator><creator>Xin, Dongjun</creator><creator>Wang, Qian</creator><creator>Chen, Ran</creator><creator>Cao, Chaoyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0004-0620-4618</orcidid><orcidid>https://orcid.org/0000-0002-8015-3028</orcidid></search><sort><creationdate>20231201</creationdate><title>Pan Evaporation Prediction Using LSTM Models Based on PCA Factor Reduction and Firefly Optimization Algorithm</title><author>Wang, Chuanli ; Li, Tianyu ; Xin, Dongjun ; Wang, Qian ; Chen, Ran ; Cao, Chaoyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2069-cb9722b127bc9c8552fa6a46d0081412eb8e31a61284c2300a249e7035ddd803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Atmospheric measurements</topic><topic>Evaporation</topic><topic>Evaporation prediction</topic><topic>firefly algorithm (FA)</topic><topic>Logic gates</topic><topic>Long short term memory</topic><topic>long short-term memory (LSTM) networks</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Optimization methods</topic><topic>pan evaporation</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Principal component analysis</topic><topic>Principal components analysis</topic><topic>principal components analysis (PCA)</topic><topic>Reduction</topic><topic>River basins</topic><topic>Rivers</topic><topic>Root-mean-square errors</topic><topic>Water resources</topic><topic>Water resources management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chuanli</creatorcontrib><creatorcontrib>Li, Tianyu</creatorcontrib><creatorcontrib>Xin, Dongjun</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Chen, Ran</creatorcontrib><creatorcontrib>Cao, Chaoyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal on miniaturization for air and space systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chuanli</au><au>Li, Tianyu</au><au>Xin, Dongjun</au><au>Wang, Qian</au><au>Chen, Ran</au><au>Cao, Chaoyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pan Evaporation Prediction Using LSTM Models Based on PCA Factor Reduction and Firefly Optimization Algorithm</atitle><jtitle>IEEE journal on miniaturization for air and space systems</jtitle><stitle>JMASS</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>4</volume><issue>4</issue><spage>416</spage><epage>422</epage><pages>416-422</pages><issn>2576-3164</issn><eissn>2576-3164</eissn><coden>IJMAJI</coden><abstract>Evaporation is an important part of the moisture exchange between the earth and the air. Understanding the trend of pan evaporation can help to reveal the status of actual evaporation, which is very useful for the allocation of regional water resources. However, long short-term memory (LSTM) has become a mainstream algorithm for predicting pan evaporation, there are two issues worth considering. One of the issues is how to automatically find the optimal hyperparameters, the other is how to eliminate the correlation between prediction factors to improve prediction performance. To address the two issues, this article proposes LSTM models based on principal component analysis (PCA) factor reduction and firefly optimization algorithm. In the proposed model, fire-fly algorithm can find the optimal hyperparameters, and PCA can eliminate the correlation between prediction factors. Xiangjiang River Basin, an important Basin for China's water resource management, is selected as a study area, the experimental results are evaluated by root mean square error (RMSE) and the coefficient of determination (&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;R^{2} &lt;/tex-math&gt;&lt;/inline-formula&gt;). The results show that the proposed models can successfully predict daily pan evaporation of the study area.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JMASS.2023.3319579</doi><tpages>7</tpages><orcidid>https://orcid.org/0009-0004-0620-4618</orcidid><orcidid>https://orcid.org/0000-0002-8015-3028</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2576-3164
ispartof IEEE journal on miniaturization for air and space systems, 2023-12, Vol.4 (4), p.416-422
issn 2576-3164
2576-3164
language eng
recordid cdi_proquest_journals_2895011399
source IEEE Electronic Library (IEL)
subjects Algorithms
Atmospheric measurements
Evaporation
Evaporation prediction
firefly algorithm (FA)
Logic gates
Long short term memory
long short-term memory (LSTM) networks
Optimization
Optimization algorithms
Optimization methods
pan evaporation
Prediction algorithms
Predictive models
Principal component analysis
Principal components analysis
principal components analysis (PCA)
Reduction
River basins
Rivers
Root-mean-square errors
Water resources
Water resources management
title Pan Evaporation Prediction Using LSTM Models Based on PCA Factor Reduction and Firefly Optimization Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pan%20Evaporation%20Prediction%20Using%20LSTM%20Models%20Based%20on%20PCA%20Factor%20Reduction%20and%20Firefly%20Optimization%20Algorithm&rft.jtitle=IEEE%20journal%20on%20miniaturization%20for%20air%20and%20space%20systems&rft.au=Wang,%20Chuanli&rft.date=2023-12-01&rft.volume=4&rft.issue=4&rft.spage=416&rft.epage=422&rft.pages=416-422&rft.issn=2576-3164&rft.eissn=2576-3164&rft.coden=IJMAJI&rft_id=info:doi/10.1109/JMASS.2023.3319579&rft_dat=%3Cproquest_ieee_%3E2895011399%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895011399&rft_id=info:pmid/&rft_ieee_id=10263773&rfr_iscdi=true