Pan Evaporation Prediction Using LSTM Models Based on PCA Factor Reduction and Firefly Optimization Algorithm
Evaporation is an important part of the moisture exchange between the earth and the air. Understanding the trend of pan evaporation can help to reveal the status of actual evaporation, which is very useful for the allocation of regional water resources. However, long short-term memory (LSTM) has bec...
Gespeichert in:
Veröffentlicht in: | IEEE journal on miniaturization for air and space systems 2023-12, Vol.4 (4), p.416-422 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 422 |
---|---|
container_issue | 4 |
container_start_page | 416 |
container_title | IEEE journal on miniaturization for air and space systems |
container_volume | 4 |
creator | Wang, Chuanli Li, Tianyu Xin, Dongjun Wang, Qian Chen, Ran Cao, Chaoyi |
description | Evaporation is an important part of the moisture exchange between the earth and the air. Understanding the trend of pan evaporation can help to reveal the status of actual evaporation, which is very useful for the allocation of regional water resources. However, long short-term memory (LSTM) has become a mainstream algorithm for predicting pan evaporation, there are two issues worth considering. One of the issues is how to automatically find the optimal hyperparameters, the other is how to eliminate the correlation between prediction factors to improve prediction performance. To address the two issues, this article proposes LSTM models based on principal component analysis (PCA) factor reduction and firefly optimization algorithm. In the proposed model, fire-fly algorithm can find the optimal hyperparameters, and PCA can eliminate the correlation between prediction factors. Xiangjiang River Basin, an important Basin for China's water resource management, is selected as a study area, the experimental results are evaluated by root mean square error (RMSE) and the coefficient of determination ( R^{2} ). The results show that the proposed models can successfully predict daily pan evaporation of the study area. |
doi_str_mv | 10.1109/JMASS.2023.3319579 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2895011399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10263773</ieee_id><sourcerecordid>2895011399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2069-cb9722b127bc9c8552fa6a46d0081412eb8e31a61284c2300a249e7035ddd803</originalsourceid><addsrcrecordid>eNpNkMtuwjAQRa2qlYpafqDqwlLXofY4ieNliqAPgUCFriMnNtQoiVM7VKJf30BYsJpZnHtndBB6oGREKRHPH_N0tRoBATZijIqIiys0gIjHAaNxeH2x36Kh9ztCCJAw4QkMULWUNZ78ysY62Rpb46XTyhSn9cubeotnq_Ucz63Spccv0muFj9Q4xVNZtNbhT632PS9rhafG6U15wIumNZX56zvTcmudab-re3SzkaXXw_O8Q-vpZD1-C2aL1_dxOgsKILEIilxwgJwCzwtRJFEEGxnLMFaEJDSkoPNEMypjCklYACNEQig0JyxSSiWE3aGnvrZx9mevfZvt7N7V3cUMEhERSpkQHQU9VTjrffd21jhTSXfIKMmOYrOT2OwoNjuL7UKPfchorS8CEDPOGfsHBLNzSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895011399</pqid></control><display><type>article</type><title>Pan Evaporation Prediction Using LSTM Models Based on PCA Factor Reduction and Firefly Optimization Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Chuanli ; Li, Tianyu ; Xin, Dongjun ; Wang, Qian ; Chen, Ran ; Cao, Chaoyi</creator><creatorcontrib>Wang, Chuanli ; Li, Tianyu ; Xin, Dongjun ; Wang, Qian ; Chen, Ran ; Cao, Chaoyi</creatorcontrib><description>Evaporation is an important part of the moisture exchange between the earth and the air. Understanding the trend of pan evaporation can help to reveal the status of actual evaporation, which is very useful for the allocation of regional water resources. However, long short-term memory (LSTM) has become a mainstream algorithm for predicting pan evaporation, there are two issues worth considering. One of the issues is how to automatically find the optimal hyperparameters, the other is how to eliminate the correlation between prediction factors to improve prediction performance. To address the two issues, this article proposes LSTM models based on principal component analysis (PCA) factor reduction and firefly optimization algorithm. In the proposed model, fire-fly algorithm can find the optimal hyperparameters, and PCA can eliminate the correlation between prediction factors. Xiangjiang River Basin, an important Basin for China's water resource management, is selected as a study area, the experimental results are evaluated by root mean square error (RMSE) and the coefficient of determination (<inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula>). The results show that the proposed models can successfully predict daily pan evaporation of the study area.</description><identifier>ISSN: 2576-3164</identifier><identifier>EISSN: 2576-3164</identifier><identifier>DOI: 10.1109/JMASS.2023.3319579</identifier><identifier>CODEN: IJMAJI</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Atmospheric measurements ; Evaporation ; Evaporation prediction ; firefly algorithm (FA) ; Logic gates ; Long short term memory ; long short-term memory (LSTM) networks ; Optimization ; Optimization algorithms ; Optimization methods ; pan evaporation ; Prediction algorithms ; Predictive models ; Principal component analysis ; Principal components analysis ; principal components analysis (PCA) ; Reduction ; River basins ; Rivers ; Root-mean-square errors ; Water resources ; Water resources management</subject><ispartof>IEEE journal on miniaturization for air and space systems, 2023-12, Vol.4 (4), p.416-422</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2069-cb9722b127bc9c8552fa6a46d0081412eb8e31a61284c2300a249e7035ddd803</cites><orcidid>0009-0004-0620-4618 ; 0000-0002-8015-3028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10263773$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids></links><search><creatorcontrib>Wang, Chuanli</creatorcontrib><creatorcontrib>Li, Tianyu</creatorcontrib><creatorcontrib>Xin, Dongjun</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Chen, Ran</creatorcontrib><creatorcontrib>Cao, Chaoyi</creatorcontrib><title>Pan Evaporation Prediction Using LSTM Models Based on PCA Factor Reduction and Firefly Optimization Algorithm</title><title>IEEE journal on miniaturization for air and space systems</title><addtitle>JMASS</addtitle><description>Evaporation is an important part of the moisture exchange between the earth and the air. Understanding the trend of pan evaporation can help to reveal the status of actual evaporation, which is very useful for the allocation of regional water resources. However, long short-term memory (LSTM) has become a mainstream algorithm for predicting pan evaporation, there are two issues worth considering. One of the issues is how to automatically find the optimal hyperparameters, the other is how to eliminate the correlation between prediction factors to improve prediction performance. To address the two issues, this article proposes LSTM models based on principal component analysis (PCA) factor reduction and firefly optimization algorithm. In the proposed model, fire-fly algorithm can find the optimal hyperparameters, and PCA can eliminate the correlation between prediction factors. Xiangjiang River Basin, an important Basin for China's water resource management, is selected as a study area, the experimental results are evaluated by root mean square error (RMSE) and the coefficient of determination (<inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula>). The results show that the proposed models can successfully predict daily pan evaporation of the study area.</description><subject>Algorithms</subject><subject>Atmospheric measurements</subject><subject>Evaporation</subject><subject>Evaporation prediction</subject><subject>firefly algorithm (FA)</subject><subject>Logic gates</subject><subject>Long short term memory</subject><subject>long short-term memory (LSTM) networks</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Optimization methods</subject><subject>pan evaporation</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Principal component analysis</subject><subject>Principal components analysis</subject><subject>principal components analysis (PCA)</subject><subject>Reduction</subject><subject>River basins</subject><subject>Rivers</subject><subject>Root-mean-square errors</subject><subject>Water resources</subject><subject>Water resources management</subject><issn>2576-3164</issn><issn>2576-3164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMtuwjAQRa2qlYpafqDqwlLXofY4ieNliqAPgUCFriMnNtQoiVM7VKJf30BYsJpZnHtndBB6oGREKRHPH_N0tRoBATZijIqIiys0gIjHAaNxeH2x36Kh9ztCCJAw4QkMULWUNZ78ysY62Rpb46XTyhSn9cubeotnq_Ucz63Spccv0muFj9Q4xVNZtNbhT632PS9rhafG6U15wIumNZX56zvTcmudab-re3SzkaXXw_O8Q-vpZD1-C2aL1_dxOgsKILEIilxwgJwCzwtRJFEEGxnLMFaEJDSkoPNEMypjCklYACNEQig0JyxSSiWE3aGnvrZx9mevfZvt7N7V3cUMEhERSpkQHQU9VTjrffd21jhTSXfIKMmOYrOT2OwoNjuL7UKPfchorS8CEDPOGfsHBLNzSQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Wang, Chuanli</creator><creator>Li, Tianyu</creator><creator>Xin, Dongjun</creator><creator>Wang, Qian</creator><creator>Chen, Ran</creator><creator>Cao, Chaoyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0004-0620-4618</orcidid><orcidid>https://orcid.org/0000-0002-8015-3028</orcidid></search><sort><creationdate>20231201</creationdate><title>Pan Evaporation Prediction Using LSTM Models Based on PCA Factor Reduction and Firefly Optimization Algorithm</title><author>Wang, Chuanli ; Li, Tianyu ; Xin, Dongjun ; Wang, Qian ; Chen, Ran ; Cao, Chaoyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2069-cb9722b127bc9c8552fa6a46d0081412eb8e31a61284c2300a249e7035ddd803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Atmospheric measurements</topic><topic>Evaporation</topic><topic>Evaporation prediction</topic><topic>firefly algorithm (FA)</topic><topic>Logic gates</topic><topic>Long short term memory</topic><topic>long short-term memory (LSTM) networks</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Optimization methods</topic><topic>pan evaporation</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Principal component analysis</topic><topic>Principal components analysis</topic><topic>principal components analysis (PCA)</topic><topic>Reduction</topic><topic>River basins</topic><topic>Rivers</topic><topic>Root-mean-square errors</topic><topic>Water resources</topic><topic>Water resources management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chuanli</creatorcontrib><creatorcontrib>Li, Tianyu</creatorcontrib><creatorcontrib>Xin, Dongjun</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Chen, Ran</creatorcontrib><creatorcontrib>Cao, Chaoyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal on miniaturization for air and space systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chuanli</au><au>Li, Tianyu</au><au>Xin, Dongjun</au><au>Wang, Qian</au><au>Chen, Ran</au><au>Cao, Chaoyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pan Evaporation Prediction Using LSTM Models Based on PCA Factor Reduction and Firefly Optimization Algorithm</atitle><jtitle>IEEE journal on miniaturization for air and space systems</jtitle><stitle>JMASS</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>4</volume><issue>4</issue><spage>416</spage><epage>422</epage><pages>416-422</pages><issn>2576-3164</issn><eissn>2576-3164</eissn><coden>IJMAJI</coden><abstract>Evaporation is an important part of the moisture exchange between the earth and the air. Understanding the trend of pan evaporation can help to reveal the status of actual evaporation, which is very useful for the allocation of regional water resources. However, long short-term memory (LSTM) has become a mainstream algorithm for predicting pan evaporation, there are two issues worth considering. One of the issues is how to automatically find the optimal hyperparameters, the other is how to eliminate the correlation between prediction factors to improve prediction performance. To address the two issues, this article proposes LSTM models based on principal component analysis (PCA) factor reduction and firefly optimization algorithm. In the proposed model, fire-fly algorithm can find the optimal hyperparameters, and PCA can eliminate the correlation between prediction factors. Xiangjiang River Basin, an important Basin for China's water resource management, is selected as a study area, the experimental results are evaluated by root mean square error (RMSE) and the coefficient of determination (<inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula>). The results show that the proposed models can successfully predict daily pan evaporation of the study area.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JMASS.2023.3319579</doi><tpages>7</tpages><orcidid>https://orcid.org/0009-0004-0620-4618</orcidid><orcidid>https://orcid.org/0000-0002-8015-3028</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2576-3164 |
ispartof | IEEE journal on miniaturization for air and space systems, 2023-12, Vol.4 (4), p.416-422 |
issn | 2576-3164 2576-3164 |
language | eng |
recordid | cdi_proquest_journals_2895011399 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Atmospheric measurements Evaporation Evaporation prediction firefly algorithm (FA) Logic gates Long short term memory long short-term memory (LSTM) networks Optimization Optimization algorithms Optimization methods pan evaporation Prediction algorithms Predictive models Principal component analysis Principal components analysis principal components analysis (PCA) Reduction River basins Rivers Root-mean-square errors Water resources Water resources management |
title | Pan Evaporation Prediction Using LSTM Models Based on PCA Factor Reduction and Firefly Optimization Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pan%20Evaporation%20Prediction%20Using%20LSTM%20Models%20Based%20on%20PCA%20Factor%20Reduction%20and%20Firefly%20Optimization%20Algorithm&rft.jtitle=IEEE%20journal%20on%20miniaturization%20for%20air%20and%20space%20systems&rft.au=Wang,%20Chuanli&rft.date=2023-12-01&rft.volume=4&rft.issue=4&rft.spage=416&rft.epage=422&rft.pages=416-422&rft.issn=2576-3164&rft.eissn=2576-3164&rft.coden=IJMAJI&rft_id=info:doi/10.1109/JMASS.2023.3319579&rft_dat=%3Cproquest_ieee_%3E2895011399%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895011399&rft_id=info:pmid/&rft_ieee_id=10263773&rfr_iscdi=true |