Constant Curvature Curve Tube Codes for Low-Latency Analog Error Correction
Recent research in ultra-reliable and low latency communications (URLLC) for future wireless systems has spurred interest in short block-length codes. In this context, we analyze arbitrary harmonic bandwidth (BW) expansions for a class of high-dimension constant curvature curve codes for analog erro...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2023-12, Vol.69 (12), p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 12 |
container_start_page | 1 |
container_title | IEEE transactions on information theory |
container_volume | 69 |
creator | Buvarp, Anders M. Taylor, Robert M. Mishra, Kumar Vijay Mili, Lamine Zaghloul, Amir I. |
description | Recent research in ultra-reliable and low latency communications (URLLC) for future wireless systems has spurred interest in short block-length codes. In this context, we analyze arbitrary harmonic bandwidth (BW) expansions for a class of high-dimension constant curvature curve codes for analog error correction of independent continuous-alphabet uniform sources. In particular, we employ the circumradius function from knot theory to prescribe insulating tubes about the centerline of constant curvature curves. We then use tube packing density within a hypersphere to optimize the curve parameters. The resulting constant curvature curve tube (C3T) codes possess the smallest possible latency, i.e., block-length is unity under BW expansion mapping. Further, the codes perform within 5 dB signal-to-distortion ratio of the optimal performance theoretically achievable at a signal-to-noise ratio (SNR) < -5 dB for BW expansion factor n ≤ 10. Furthermore, we propose a neural-network-based method to decode C3T codes. We show that, at low SNR, the neural-network-based C3T decoder outperforms the maximum likelihood and minimum mean-squared error decoders for all n . The best possible digital codes require two to three orders of magnitude higher latency compared to C3T codes, thereby demonstrating the latter's utility for URLLC. |
doi_str_mv | 10.1109/TIT.2023.3302318 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2895005589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10210128</ieee_id><sourcerecordid>2895005589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-ed5842eaa7b1b3d247019b09c23338c779f69caab9666ac40da9eb9d161b1feb3</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EEqWwMzBEYk7xZ2KPVVSgIhJLmC3buaBWJS62A-p_j6EdWO7e6d47nX4I3RK8IASrh27dLSimbMFYrkSeoRkRoi5VJfg5mmFMZKk4l5foKsZtHrkgdIZeGj_GZMZUNFP4MmkK8Keg6Cabpe8hFoMPReu_y9YkGN2hWI5m59-LVQh50fgQwKWNH6_RxWB2EW5OfY7eHldd81y2r0_rZtmWjnKRSuiF5BSMqS2xrKe8xkRZrBxljElX12qolDPGqqqqjOO4Nwqs6klFLBnAsjm6P97dB_85QUx666eQf4qaSiUwFkKq7MJHlws-xgCD3ofNhwkHTbD-RaYzMv2LTJ-Q5cjdMbIBgH92SjChkv0AKPNnRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895005589</pqid></control><display><type>article</type><title>Constant Curvature Curve Tube Codes for Low-Latency Analog Error Correction</title><source>IEEE Electronic Library (IEL)</source><creator>Buvarp, Anders M. ; Taylor, Robert M. ; Mishra, Kumar Vijay ; Mili, Lamine ; Zaghloul, Amir I.</creator><creatorcontrib>Buvarp, Anders M. ; Taylor, Robert M. ; Mishra, Kumar Vijay ; Mili, Lamine ; Zaghloul, Amir I.</creatorcontrib><description>Recent research in ultra-reliable and low latency communications (URLLC) for future wireless systems has spurred interest in short block-length codes. In this context, we analyze arbitrary harmonic bandwidth (BW) expansions for a class of high-dimension constant curvature curve codes for analog error correction of independent continuous-alphabet uniform sources. In particular, we employ the circumradius function from knot theory to prescribe insulating tubes about the centerline of constant curvature curves. We then use tube packing density within a hypersphere to optimize the curve parameters. The resulting constant curvature curve tube (C3T) codes possess the smallest possible latency, i.e., block-length is unity under BW expansion mapping. Further, the codes perform within 5 dB signal-to-distortion ratio of the optimal performance theoretically achievable at a signal-to-noise ratio (SNR) < -5 dB for BW expansion factor n ≤ 10. Furthermore, we propose a neural-network-based method to decode C3T codes. We show that, at low SNR, the neural-network-based C3T decoder outperforms the maximum likelihood and minimum mean-squared error decoders for all n . The best possible digital codes require two to three orders of magnitude higher latency compared to C3T codes, thereby demonstrating the latter's utility for URLLC.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2023.3302318</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><![CDATA[<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Analog error correction ; <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">constant curvature curves ; <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">knot theory ; <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">tube packing ; <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">URLLC ; Codes ; Curvature ; Decoders ; Decoding ; Electron tubes ; Error correction ; Error correction & detection ; Error correction codes ; Hyperspheres ; Knot theory ; Mathematical problems ; Maximum likelihood decoding ; Network latency ; Neural networks ; Optimization ; Packing density ; Signal to noise ratio ; Spirals ; Tubes ; Ultra reliable low latency communication]]></subject><ispartof>IEEE transactions on information theory, 2023-12, Vol.69 (12), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-ed5842eaa7b1b3d247019b09c23338c779f69caab9666ac40da9eb9d161b1feb3</cites><orcidid>0000-0002-5386-609X ; 0000-0001-6134-3945</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10210128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10210128$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Buvarp, Anders M.</creatorcontrib><creatorcontrib>Taylor, Robert M.</creatorcontrib><creatorcontrib>Mishra, Kumar Vijay</creatorcontrib><creatorcontrib>Mili, Lamine</creatorcontrib><creatorcontrib>Zaghloul, Amir I.</creatorcontrib><title>Constant Curvature Curve Tube Codes for Low-Latency Analog Error Correction</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Recent research in ultra-reliable and low latency communications (URLLC) for future wireless systems has spurred interest in short block-length codes. In this context, we analyze arbitrary harmonic bandwidth (BW) expansions for a class of high-dimension constant curvature curve codes for analog error correction of independent continuous-alphabet uniform sources. In particular, we employ the circumradius function from knot theory to prescribe insulating tubes about the centerline of constant curvature curves. We then use tube packing density within a hypersphere to optimize the curve parameters. The resulting constant curvature curve tube (C3T) codes possess the smallest possible latency, i.e., block-length is unity under BW expansion mapping. Further, the codes perform within 5 dB signal-to-distortion ratio of the optimal performance theoretically achievable at a signal-to-noise ratio (SNR) < -5 dB for BW expansion factor n ≤ 10. Furthermore, we propose a neural-network-based method to decode C3T codes. We show that, at low SNR, the neural-network-based C3T decoder outperforms the maximum likelihood and minimum mean-squared error decoders for all n . The best possible digital codes require two to three orders of magnitude higher latency compared to C3T codes, thereby demonstrating the latter's utility for URLLC.</description><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Analog error correction</subject><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">constant curvature curves</subject><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">knot theory</subject><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">tube packing</subject><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">URLLC</subject><subject>Codes</subject><subject>Curvature</subject><subject>Decoders</subject><subject>Decoding</subject><subject>Electron tubes</subject><subject>Error correction</subject><subject>Error correction & detection</subject><subject>Error correction codes</subject><subject>Hyperspheres</subject><subject>Knot theory</subject><subject>Mathematical problems</subject><subject>Maximum likelihood decoding</subject><subject>Network latency</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Packing density</subject><subject>Signal to noise ratio</subject><subject>Spirals</subject><subject>Tubes</subject><subject>Ultra reliable low latency communication</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EEqWwMzBEYk7xZ2KPVVSgIhJLmC3buaBWJS62A-p_j6EdWO7e6d47nX4I3RK8IASrh27dLSimbMFYrkSeoRkRoi5VJfg5mmFMZKk4l5foKsZtHrkgdIZeGj_GZMZUNFP4MmkK8Keg6Cabpe8hFoMPReu_y9YkGN2hWI5m59-LVQh50fgQwKWNH6_RxWB2EW5OfY7eHldd81y2r0_rZtmWjnKRSuiF5BSMqS2xrKe8xkRZrBxljElX12qolDPGqqqqjOO4Nwqs6klFLBnAsjm6P97dB_85QUx666eQf4qaSiUwFkKq7MJHlws-xgCD3ofNhwkHTbD-RaYzMv2LTJ-Q5cjdMbIBgH92SjChkv0AKPNnRA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Buvarp, Anders M.</creator><creator>Taylor, Robert M.</creator><creator>Mishra, Kumar Vijay</creator><creator>Mili, Lamine</creator><creator>Zaghloul, Amir I.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5386-609X</orcidid><orcidid>https://orcid.org/0000-0001-6134-3945</orcidid></search><sort><creationdate>20231201</creationdate><title>Constant Curvature Curve Tube Codes for Low-Latency Analog Error Correction</title><author>Buvarp, Anders M. ; Taylor, Robert M. ; Mishra, Kumar Vijay ; Mili, Lamine ; Zaghloul, Amir I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-ed5842eaa7b1b3d247019b09c23338c779f69caab9666ac40da9eb9d161b1feb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Analog error correction</topic><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">constant curvature curves</topic><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">knot theory</topic><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">tube packing</topic><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">URLLC</topic><topic>Codes</topic><topic>Curvature</topic><topic>Decoders</topic><topic>Decoding</topic><topic>Electron tubes</topic><topic>Error correction</topic><topic>Error correction & detection</topic><topic>Error correction codes</topic><topic>Hyperspheres</topic><topic>Knot theory</topic><topic>Mathematical problems</topic><topic>Maximum likelihood decoding</topic><topic>Network latency</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Packing density</topic><topic>Signal to noise ratio</topic><topic>Spirals</topic><topic>Tubes</topic><topic>Ultra reliable low latency communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buvarp, Anders M.</creatorcontrib><creatorcontrib>Taylor, Robert M.</creatorcontrib><creatorcontrib>Mishra, Kumar Vijay</creatorcontrib><creatorcontrib>Mili, Lamine</creatorcontrib><creatorcontrib>Zaghloul, Amir I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Buvarp, Anders M.</au><au>Taylor, Robert M.</au><au>Mishra, Kumar Vijay</au><au>Mili, Lamine</au><au>Zaghloul, Amir I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constant Curvature Curve Tube Codes for Low-Latency Analog Error Correction</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>69</volume><issue>12</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Recent research in ultra-reliable and low latency communications (URLLC) for future wireless systems has spurred interest in short block-length codes. In this context, we analyze arbitrary harmonic bandwidth (BW) expansions for a class of high-dimension constant curvature curve codes for analog error correction of independent continuous-alphabet uniform sources. In particular, we employ the circumradius function from knot theory to prescribe insulating tubes about the centerline of constant curvature curves. We then use tube packing density within a hypersphere to optimize the curve parameters. The resulting constant curvature curve tube (C3T) codes possess the smallest possible latency, i.e., block-length is unity under BW expansion mapping. Further, the codes perform within 5 dB signal-to-distortion ratio of the optimal performance theoretically achievable at a signal-to-noise ratio (SNR) < -5 dB for BW expansion factor n ≤ 10. Furthermore, we propose a neural-network-based method to decode C3T codes. We show that, at low SNR, the neural-network-based C3T decoder outperforms the maximum likelihood and minimum mean-squared error decoders for all n . The best possible digital codes require two to three orders of magnitude higher latency compared to C3T codes, thereby demonstrating the latter's utility for URLLC.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2023.3302318</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5386-609X</orcidid><orcidid>https://orcid.org/0000-0001-6134-3945</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2023-12, Vol.69 (12), p.1-1 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_2895005589 |
source | IEEE Electronic Library (IEL) |
subjects | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Analog error correction <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">constant curvature curves <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">knot theory <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">tube packing <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">URLLC Codes Curvature Decoders Decoding Electron tubes Error correction Error correction & detection Error correction codes Hyperspheres Knot theory Mathematical problems Maximum likelihood decoding Network latency Neural networks Optimization Packing density Signal to noise ratio Spirals Tubes Ultra reliable low latency communication |
title | Constant Curvature Curve Tube Codes for Low-Latency Analog Error Correction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constant%20Curvature%20Curve%20Tube%20Codes%20for%20Low-Latency%20Analog%20Error%20Correction&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Buvarp,%20Anders%20M.&rft.date=2023-12-01&rft.volume=69&rft.issue=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2023.3302318&rft_dat=%3Cproquest_RIE%3E2895005589%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895005589&rft_id=info:pmid/&rft_ieee_id=10210128&rfr_iscdi=true |