Analysis of Single Event Response and Hardening Methods in 1.2 kV SiC Power MOSFET With Multicell and Termination Structure

In this article, the single event response and hardening methods of 1.2 kV silicon carbide (SiC) power MOSFET with multicell and field limiting rings (FLRs) termination structure are investigated by using numerical simulations. Our studies reveal that the termination region is insensitive to single-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2023-12, Vol.70 (12), p.6459-6464
Hauptverfasser: Lu, Jiang, Song, Wenjun, Liu, Tao, Tang, Jun, Zhao, Wen, Li, Duoli, Li, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6464
container_issue 12
container_start_page 6459
container_title IEEE transactions on electron devices
container_volume 70
creator Lu, Jiang
Song, Wenjun
Liu, Tao
Tang, Jun
Zhao, Wen
Li, Duoli
Li, Bo
description In this article, the single event response and hardening methods of 1.2 kV silicon carbide (SiC) power MOSFET with multicell and field limiting rings (FLRs) termination structure are investigated by using numerical simulations. Our studies reveal that the termination region is insensitive to single-event burnout (SEB) due to the floating state (no grounded contact hole). It can be found that the electric potential difference along the penetrating path is small. Thus, the Kirk effect could not occur. Conversely, at the cell region, the whole area is connected with the source contact hole, the Kirk effect happens unavoidably if the high bias voltage is applied, leading to a continuous current generation with a local hot spot. Meanwhile, it can be found that the intersection of the cell and termination region is the most sensitive area when the strike position is near the contact hole. In this situation, the huge carriers are generated by the avalanche multiplication behavior like in the cell region. Then, the current will flow along the surface region, resulting in a continual current generation with a local temperature rising. Furthermore, a new hardening technique with a shortened metal plate is proposed. Simulation results indicate that the new structure can alleviate the current accumulation at the intersection region, bringing a better SEB tolerance.
doi_str_mv 10.1109/TED.2023.3321278
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2895005179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10274822</ieee_id><sourcerecordid>2895005179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-6a6b08ca4a810a4df69b2760ab09fedc225ac63e3be393dd703bdf5bc06e27ad3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBYYk7xR-LEY1UKRWpVRAuMkRNfqEvqFNsBVfx5UsrAdHp173PSPQhdUjKglMib5fh2wAjjA84ZZWl2hHo0SdJIilgcox4hNIskz_gpOvN-3UURx6yHvodW1TtvPG4qvDD2rQY8_gQb8BP4bWM9YGU1niinwXZrPIOwarTHxmI6YPj9paNG-LH5Aodn88XdeIlfTVjhWVsHU0Jd__JLcBtjVTCNxYvg2jK0Ds7RSaVqDxd_s4-eO3w0iabz-4fRcBqVLE5CJJQoSFaqWGWUqFhXQhYsFUQVRFagS8YSVQoOvAAuudYp4YWukqIkAliqNO-j68PdrWs-WvAhXzet6_72OctkQkhCU9m1yKFVusZ7B1W-dWaj3C6nJN8rzjvF-V5x_qe4Q64OiAGAf3WWxhlj_AcetHe-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895005179</pqid></control><display><type>article</type><title>Analysis of Single Event Response and Hardening Methods in 1.2 kV SiC Power MOSFET With Multicell and Termination Structure</title><source>IEEE Electronic Library (IEL)</source><creator>Lu, Jiang ; Song, Wenjun ; Liu, Tao ; Tang, Jun ; Zhao, Wen ; Li, Duoli ; Li, Bo</creator><creatorcontrib>Lu, Jiang ; Song, Wenjun ; Liu, Tao ; Tang, Jun ; Zhao, Wen ; Li, Duoli ; Li, Bo</creatorcontrib><description>In this article, the single event response and hardening methods of 1.2 kV silicon carbide (SiC) power MOSFET with multicell and field limiting rings (FLRs) termination structure are investigated by using numerical simulations. Our studies reveal that the termination region is insensitive to single-event burnout (SEB) due to the floating state (no grounded contact hole). It can be found that the electric potential difference along the penetrating path is small. Thus, the Kirk effect could not occur. Conversely, at the cell region, the whole area is connected with the source contact hole, the Kirk effect happens unavoidably if the high bias voltage is applied, leading to a continuous current generation with a local hot spot. Meanwhile, it can be found that the intersection of the cell and termination region is the most sensitive area when the strike position is near the contact hole. In this situation, the huge carriers are generated by the avalanche multiplication behavior like in the cell region. Then, the current will flow along the surface region, resulting in a continual current generation with a local temperature rising. Furthermore, a new hardening technique with a shortened metal plate is proposed. Simulation results indicate that the new structure can alleviate the current accumulation at the intersection region, bringing a better SEB tolerance.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2023.3321278</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Contact holes ; Electric contacts ; Electric field ; Electric fields ; field limiting rings (FLRs) ; Hardening ; Ions ; Junctions ; Kirk effect ; Metal plates ; MOSFET ; MOSFETs ; multicell ; Semiconductor process modeling ; Silicon carbide ; silicon carbide (SiC) power MOSFET ; single event burnout (SEB) ; termination ; Transient analysis</subject><ispartof>IEEE transactions on electron devices, 2023-12, Vol.70 (12), p.6459-6464</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-6a6b08ca4a810a4df69b2760ab09fedc225ac63e3be393dd703bdf5bc06e27ad3</cites><orcidid>0000-0003-4905-2744 ; 0000-0002-2573-3660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10274822$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10274822$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu, Jiang</creatorcontrib><creatorcontrib>Song, Wenjun</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Tang, Jun</creatorcontrib><creatorcontrib>Zhao, Wen</creatorcontrib><creatorcontrib>Li, Duoli</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><title>Analysis of Single Event Response and Hardening Methods in 1.2 kV SiC Power MOSFET With Multicell and Termination Structure</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this article, the single event response and hardening methods of 1.2 kV silicon carbide (SiC) power MOSFET with multicell and field limiting rings (FLRs) termination structure are investigated by using numerical simulations. Our studies reveal that the termination region is insensitive to single-event burnout (SEB) due to the floating state (no grounded contact hole). It can be found that the electric potential difference along the penetrating path is small. Thus, the Kirk effect could not occur. Conversely, at the cell region, the whole area is connected with the source contact hole, the Kirk effect happens unavoidably if the high bias voltage is applied, leading to a continuous current generation with a local hot spot. Meanwhile, it can be found that the intersection of the cell and termination region is the most sensitive area when the strike position is near the contact hole. In this situation, the huge carriers are generated by the avalanche multiplication behavior like in the cell region. Then, the current will flow along the surface region, resulting in a continual current generation with a local temperature rising. Furthermore, a new hardening technique with a shortened metal plate is proposed. Simulation results indicate that the new structure can alleviate the current accumulation at the intersection region, bringing a better SEB tolerance.</description><subject>Contact holes</subject><subject>Electric contacts</subject><subject>Electric field</subject><subject>Electric fields</subject><subject>field limiting rings (FLRs)</subject><subject>Hardening</subject><subject>Ions</subject><subject>Junctions</subject><subject>Kirk effect</subject><subject>Metal plates</subject><subject>MOSFET</subject><subject>MOSFETs</subject><subject>multicell</subject><subject>Semiconductor process modeling</subject><subject>Silicon carbide</subject><subject>silicon carbide (SiC) power MOSFET</subject><subject>single event burnout (SEB)</subject><subject>termination</subject><subject>Transient analysis</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBYYk7xR-LEY1UKRWpVRAuMkRNfqEvqFNsBVfx5UsrAdHp173PSPQhdUjKglMib5fh2wAjjA84ZZWl2hHo0SdJIilgcox4hNIskz_gpOvN-3UURx6yHvodW1TtvPG4qvDD2rQY8_gQb8BP4bWM9YGU1niinwXZrPIOwarTHxmI6YPj9paNG-LH5Aodn88XdeIlfTVjhWVsHU0Jd__JLcBtjVTCNxYvg2jK0Ds7RSaVqDxd_s4-eO3w0iabz-4fRcBqVLE5CJJQoSFaqWGWUqFhXQhYsFUQVRFagS8YSVQoOvAAuudYp4YWukqIkAliqNO-j68PdrWs-WvAhXzet6_72OctkQkhCU9m1yKFVusZ7B1W-dWaj3C6nJN8rzjvF-V5x_qe4Q64OiAGAf3WWxhlj_AcetHe-</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Lu, Jiang</creator><creator>Song, Wenjun</creator><creator>Liu, Tao</creator><creator>Tang, Jun</creator><creator>Zhao, Wen</creator><creator>Li, Duoli</creator><creator>Li, Bo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4905-2744</orcidid><orcidid>https://orcid.org/0000-0002-2573-3660</orcidid></search><sort><creationdate>20231201</creationdate><title>Analysis of Single Event Response and Hardening Methods in 1.2 kV SiC Power MOSFET With Multicell and Termination Structure</title><author>Lu, Jiang ; Song, Wenjun ; Liu, Tao ; Tang, Jun ; Zhao, Wen ; Li, Duoli ; Li, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-6a6b08ca4a810a4df69b2760ab09fedc225ac63e3be393dd703bdf5bc06e27ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Contact holes</topic><topic>Electric contacts</topic><topic>Electric field</topic><topic>Electric fields</topic><topic>field limiting rings (FLRs)</topic><topic>Hardening</topic><topic>Ions</topic><topic>Junctions</topic><topic>Kirk effect</topic><topic>Metal plates</topic><topic>MOSFET</topic><topic>MOSFETs</topic><topic>multicell</topic><topic>Semiconductor process modeling</topic><topic>Silicon carbide</topic><topic>silicon carbide (SiC) power MOSFET</topic><topic>single event burnout (SEB)</topic><topic>termination</topic><topic>Transient analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Jiang</creatorcontrib><creatorcontrib>Song, Wenjun</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Tang, Jun</creatorcontrib><creatorcontrib>Zhao, Wen</creatorcontrib><creatorcontrib>Li, Duoli</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Jiang</au><au>Song, Wenjun</au><au>Liu, Tao</au><au>Tang, Jun</au><au>Zhao, Wen</au><au>Li, Duoli</au><au>Li, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Single Event Response and Hardening Methods in 1.2 kV SiC Power MOSFET With Multicell and Termination Structure</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>70</volume><issue>12</issue><spage>6459</spage><epage>6464</epage><pages>6459-6464</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this article, the single event response and hardening methods of 1.2 kV silicon carbide (SiC) power MOSFET with multicell and field limiting rings (FLRs) termination structure are investigated by using numerical simulations. Our studies reveal that the termination region is insensitive to single-event burnout (SEB) due to the floating state (no grounded contact hole). It can be found that the electric potential difference along the penetrating path is small. Thus, the Kirk effect could not occur. Conversely, at the cell region, the whole area is connected with the source contact hole, the Kirk effect happens unavoidably if the high bias voltage is applied, leading to a continuous current generation with a local hot spot. Meanwhile, it can be found that the intersection of the cell and termination region is the most sensitive area when the strike position is near the contact hole. In this situation, the huge carriers are generated by the avalanche multiplication behavior like in the cell region. Then, the current will flow along the surface region, resulting in a continual current generation with a local temperature rising. Furthermore, a new hardening technique with a shortened metal plate is proposed. Simulation results indicate that the new structure can alleviate the current accumulation at the intersection region, bringing a better SEB tolerance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2023.3321278</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4905-2744</orcidid><orcidid>https://orcid.org/0000-0002-2573-3660</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2023-12, Vol.70 (12), p.6459-6464
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_2895005179
source IEEE Electronic Library (IEL)
subjects Contact holes
Electric contacts
Electric field
Electric fields
field limiting rings (FLRs)
Hardening
Ions
Junctions
Kirk effect
Metal plates
MOSFET
MOSFETs
multicell
Semiconductor process modeling
Silicon carbide
silicon carbide (SiC) power MOSFET
single event burnout (SEB)
termination
Transient analysis
title Analysis of Single Event Response and Hardening Methods in 1.2 kV SiC Power MOSFET With Multicell and Termination Structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A23%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Single%20Event%20Response%20and%20Hardening%20Methods%20in%201.2%20kV%20SiC%20Power%20MOSFET%20With%20Multicell%20and%20Termination%20Structure&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Lu,%20Jiang&rft.date=2023-12-01&rft.volume=70&rft.issue=12&rft.spage=6459&rft.epage=6464&rft.pages=6459-6464&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2023.3321278&rft_dat=%3Cproquest_RIE%3E2895005179%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895005179&rft_id=info:pmid/&rft_ieee_id=10274822&rfr_iscdi=true