Performance evaluation of deep learning techniques for human activity recognition system

Human Activity Recognition (HAR) is crucial in various applications, such as sports and surveillance. This paper focuses on the performance evaluation of a HAR system using deep learning techniques. Features will be extracted using 3DCNN, and classification will be performed using LSTM. Meanwhile, 3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2023-11, Vol.2641 (1), p.12012
Hauptverfasser: Low, Kah Sin, Eng, Swee Kheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12012
container_title Journal of physics. Conference series
container_volume 2641
creator Low, Kah Sin
Eng, Swee Kheng
description Human Activity Recognition (HAR) is crucial in various applications, such as sports and surveillance. This paper focuses on the performance evaluation of a HAR system using deep learning techniques. Features will be extracted using 3DCNN, and classification will be performed using LSTM. Meanwhile, 3DCNN and RNN are two additional, well-known classification techniques that will be applied in order to compare the effectiveness of the three classifiers. The 3DCNN-LSTM approach contributes the highest overall accuracy of 86.57%, followed by 3DCNN-3DCNN and 3DCNN-RNN with the overall accuracy of 86.07% and 79.60%, respectively. Overall, this paper contributes to the field of HAR and provides valuable insights for the development of activity recognition systems.
doi_str_mv 10.1088/1742-6596/2641/1/012012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2894947171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894947171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2742-b8948914428df68ff0b2494013587510076c5889753685ce11735cc703672d023</originalsourceid><addsrcrecordid>eNqFkF1LwzAYhYMoOKe_wYB3wmy-2qSXMvxkoKCCdyFLky1ja2rSDvbvTa1MBMHwQgLveU4OB4BzjK4wEiLDnJFJkZdFRgqGM5whTNIcgNF-c7h_C3EMTmJcIUTT4SPw_myC9WGjam2g2ap1p1rna-gtrIxp4NqoULt6AVujl7X76EyESQ-XXUKg0q3bunYHg9F-UbsvNO5iazan4MiqdTRn3_cYvN3evE7vJ7Onu4fp9WyiSR9pLkomSswYEZUthLVoTljJEKa54DlGiBc6pS55TguRa4Mxp7nWHNGCkwoROgYXg28TfJ-ulSvfhTp9KUnyLhnHHCcVH1Q6-BiDsbIJbqPCTmIk-xplX5Dsy5J9jRLLocZE0oF0vvmx_p-6_IN6fJ6-_BbKprL0E7BBgLo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894947171</pqid></control><display><type>article</type><title>Performance evaluation of deep learning techniques for human activity recognition system</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Low, Kah Sin ; Eng, Swee Kheng</creator><creatorcontrib>Low, Kah Sin ; Eng, Swee Kheng</creatorcontrib><description>Human Activity Recognition (HAR) is crucial in various applications, such as sports and surveillance. This paper focuses on the performance evaluation of a HAR system using deep learning techniques. Features will be extracted using 3DCNN, and classification will be performed using LSTM. Meanwhile, 3DCNN and RNN are two additional, well-known classification techniques that will be applied in order to compare the effectiveness of the three classifiers. The 3DCNN-LSTM approach contributes the highest overall accuracy of 86.57%, followed by 3DCNN-3DCNN and 3DCNN-RNN with the overall accuracy of 86.07% and 79.60%, respectively. Overall, this paper contributes to the field of HAR and provides valuable insights for the development of activity recognition systems.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2641/1/012012</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Classification ; Deep learning ; Human activity recognition ; Machine learning ; Performance evaluation ; Physics</subject><ispartof>Journal of physics. Conference series, 2023-11, Vol.2641 (1), p.12012</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2742-b8948914428df68ff0b2494013587510076c5889753685ce11735cc703672d023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2641/1/012012/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Low, Kah Sin</creatorcontrib><creatorcontrib>Eng, Swee Kheng</creatorcontrib><title>Performance evaluation of deep learning techniques for human activity recognition system</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Human Activity Recognition (HAR) is crucial in various applications, such as sports and surveillance. This paper focuses on the performance evaluation of a HAR system using deep learning techniques. Features will be extracted using 3DCNN, and classification will be performed using LSTM. Meanwhile, 3DCNN and RNN are two additional, well-known classification techniques that will be applied in order to compare the effectiveness of the three classifiers. The 3DCNN-LSTM approach contributes the highest overall accuracy of 86.57%, followed by 3DCNN-3DCNN and 3DCNN-RNN with the overall accuracy of 86.07% and 79.60%, respectively. Overall, this paper contributes to the field of HAR and provides valuable insights for the development of activity recognition systems.</description><subject>Classification</subject><subject>Deep learning</subject><subject>Human activity recognition</subject><subject>Machine learning</subject><subject>Performance evaluation</subject><subject>Physics</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAYhYMoOKe_wYB3wmy-2qSXMvxkoKCCdyFLky1ja2rSDvbvTa1MBMHwQgLveU4OB4BzjK4wEiLDnJFJkZdFRgqGM5whTNIcgNF-c7h_C3EMTmJcIUTT4SPw_myC9WGjam2g2ap1p1rna-gtrIxp4NqoULt6AVujl7X76EyESQ-XXUKg0q3bunYHg9F-UbsvNO5iazan4MiqdTRn3_cYvN3evE7vJ7Onu4fp9WyiSR9pLkomSswYEZUthLVoTljJEKa54DlGiBc6pS55TguRa4Mxp7nWHNGCkwoROgYXg28TfJ-ulSvfhTp9KUnyLhnHHCcVH1Q6-BiDsbIJbqPCTmIk-xplX5Dsy5J9jRLLocZE0oF0vvmx_p-6_IN6fJ6-_BbKprL0E7BBgLo</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Low, Kah Sin</creator><creator>Eng, Swee Kheng</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20231101</creationdate><title>Performance evaluation of deep learning techniques for human activity recognition system</title><author>Low, Kah Sin ; Eng, Swee Kheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2742-b8948914428df68ff0b2494013587510076c5889753685ce11735cc703672d023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classification</topic><topic>Deep learning</topic><topic>Human activity recognition</topic><topic>Machine learning</topic><topic>Performance evaluation</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Low, Kah Sin</creatorcontrib><creatorcontrib>Eng, Swee Kheng</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Low, Kah Sin</au><au>Eng, Swee Kheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance evaluation of deep learning techniques for human activity recognition system</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>2641</volume><issue>1</issue><spage>12012</spage><pages>12012-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Human Activity Recognition (HAR) is crucial in various applications, such as sports and surveillance. This paper focuses on the performance evaluation of a HAR system using deep learning techniques. Features will be extracted using 3DCNN, and classification will be performed using LSTM. Meanwhile, 3DCNN and RNN are two additional, well-known classification techniques that will be applied in order to compare the effectiveness of the three classifiers. The 3DCNN-LSTM approach contributes the highest overall accuracy of 86.57%, followed by 3DCNN-3DCNN and 3DCNN-RNN with the overall accuracy of 86.07% and 79.60%, respectively. Overall, this paper contributes to the field of HAR and provides valuable insights for the development of activity recognition systems.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2641/1/012012</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2023-11, Vol.2641 (1), p.12012
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2894947171
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Classification
Deep learning
Human activity recognition
Machine learning
Performance evaluation
Physics
title Performance evaluation of deep learning techniques for human activity recognition system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20evaluation%20of%20deep%20learning%20techniques%20for%20human%20activity%20recognition%20system&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Low,%20Kah%20Sin&rft.date=2023-11-01&rft.volume=2641&rft.issue=1&rft.spage=12012&rft.pages=12012-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2641/1/012012&rft_dat=%3Cproquest_cross%3E2894947171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894947171&rft_id=info:pmid/&rfr_iscdi=true