Passive Tracer Transport in Ocean Modeling: Implementation on GPUs, Efficiency and Optimizations

Numerical simulation of the ocean general circulation remains one of the most computationally demanding problems. For both climate and forecast research, the speedup of the calculations is still an ongoing challenge. This problem can be remedied by developing new computationally efficient algorithms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2023-08, Vol.44 (8), p.3040-3058
Hauptverfasser: Gaschuk, E. M., Ezhkova, A. A., Onoprienko, V. A., Debolskiy, A. V., Mortikov, E. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3058
container_issue 8
container_start_page 3040
container_title Lobachevskii journal of mathematics
container_volume 44
creator Gaschuk, E. M.
Ezhkova, A. A.
Onoprienko, V. A.
Debolskiy, A. V.
Mortikov, E. V.
description Numerical simulation of the ocean general circulation remains one of the most computationally demanding problems. For both climate and forecast research, the speedup of the calculations is still an ongoing challenge. This problem can be remedied by developing new computationally efficient algorithms. Another, and in fact complementary, approach is to utilize massively parallel coprocessors such as Graphics Processing Units (GPUs). In this study, we consider the GPU implementation efficiency of the advection schemes commonly used in tracer transport algorithms for ocean modeling and compare it with the implementation on a Central Processing Unit (CPU). The simulations on refined grids were found to be highly efficient when implemented on the GPU, in contrast to the coarse resolution. We also consider a number of optimization techniques to improve GPU efficiency in the latter case.
doi_str_mv 10.1134/S1995080223080152
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2894911247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894911247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-aa89e58c977496cf750e3ed29f8ee53cb843986b63e054ece869c94ba2a126453</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvAq6ubv5t4k1JrodKC7XlN09mS0s2uyVaon97UCh5EGOYNzO-9gUHomuR3hDB-_0q0FrnKKWWpE0FPUI8oojKtJT1Nc1pnh_05uohxkydQStlDbzMTo_sAPA_GQjiIj20TOuw8nlowHr80K9g6v37A47rdQg2-M51rPE41mi3iLR5WlbMOvN1j41d42naudp_fULxEZ5XZRrj60T5aPA3ng-dsMh2NB4-TzFKpuswYpUEoq4uCa2mrQuTAYEV1pQAEs0vFmVZyKRnkgoMFJbXVfGmoIVRywfro5pjbhuZ9B7ErN80u-HSypEpzTQjlRaLIkbKhiTFAVbbB1SbsS5KXh0eWfx6ZPPToiYn1awi_yf-bvgDC5XST</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894911247</pqid></control><display><type>article</type><title>Passive Tracer Transport in Ocean Modeling: Implementation on GPUs, Efficiency and Optimizations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gaschuk, E. M. ; Ezhkova, A. A. ; Onoprienko, V. A. ; Debolskiy, A. V. ; Mortikov, E. V.</creator><creatorcontrib>Gaschuk, E. M. ; Ezhkova, A. A. ; Onoprienko, V. A. ; Debolskiy, A. V. ; Mortikov, E. V.</creatorcontrib><description>Numerical simulation of the ocean general circulation remains one of the most computationally demanding problems. For both climate and forecast research, the speedup of the calculations is still an ongoing challenge. This problem can be remedied by developing new computationally efficient algorithms. Another, and in fact complementary, approach is to utilize massively parallel coprocessors such as Graphics Processing Units (GPUs). In this study, we consider the GPU implementation efficiency of the advection schemes commonly used in tracer transport algorithms for ocean modeling and compare it with the implementation on a Central Processing Unit (CPU). The simulations on refined grids were found to be highly efficient when implemented on the GPU, in contrast to the coarse resolution. We also consider a number of optimization techniques to improve GPU efficiency in the latter case.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080223080152</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Algorithms ; Analysis ; Central processing units ; Computer simulation ; CPUs ; Geometry ; Graphics processing units ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Ocean models ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2023-08, Vol.44 (8), p.3040-3058</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-aa89e58c977496cf750e3ed29f8ee53cb843986b63e054ece869c94ba2a126453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080223080152$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080223080152$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gaschuk, E. M.</creatorcontrib><creatorcontrib>Ezhkova, A. A.</creatorcontrib><creatorcontrib>Onoprienko, V. A.</creatorcontrib><creatorcontrib>Debolskiy, A. V.</creatorcontrib><creatorcontrib>Mortikov, E. V.</creatorcontrib><title>Passive Tracer Transport in Ocean Modeling: Implementation on GPUs, Efficiency and Optimizations</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>Numerical simulation of the ocean general circulation remains one of the most computationally demanding problems. For both climate and forecast research, the speedup of the calculations is still an ongoing challenge. This problem can be remedied by developing new computationally efficient algorithms. Another, and in fact complementary, approach is to utilize massively parallel coprocessors such as Graphics Processing Units (GPUs). In this study, we consider the GPU implementation efficiency of the advection schemes commonly used in tracer transport algorithms for ocean modeling and compare it with the implementation on a Central Processing Unit (CPU). The simulations on refined grids were found to be highly efficient when implemented on the GPU, in contrast to the coarse resolution. We also consider a number of optimization techniques to improve GPU efficiency in the latter case.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Central processing units</subject><subject>Computer simulation</subject><subject>CPUs</subject><subject>Geometry</subject><subject>Graphics processing units</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ocean models</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvAq6ubv5t4k1JrodKC7XlN09mS0s2uyVaon97UCh5EGOYNzO-9gUHomuR3hDB-_0q0FrnKKWWpE0FPUI8oojKtJT1Nc1pnh_05uohxkydQStlDbzMTo_sAPA_GQjiIj20TOuw8nlowHr80K9g6v37A47rdQg2-M51rPE41mi3iLR5WlbMOvN1j41d42naudp_fULxEZ5XZRrj60T5aPA3ng-dsMh2NB4-TzFKpuswYpUEoq4uCa2mrQuTAYEV1pQAEs0vFmVZyKRnkgoMFJbXVfGmoIVRywfro5pjbhuZ9B7ErN80u-HSypEpzTQjlRaLIkbKhiTFAVbbB1SbsS5KXh0eWfx6ZPPToiYn1awi_yf-bvgDC5XST</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Gaschuk, E. M.</creator><creator>Ezhkova, A. A.</creator><creator>Onoprienko, V. A.</creator><creator>Debolskiy, A. V.</creator><creator>Mortikov, E. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230801</creationdate><title>Passive Tracer Transport in Ocean Modeling: Implementation on GPUs, Efficiency and Optimizations</title><author>Gaschuk, E. M. ; Ezhkova, A. A. ; Onoprienko, V. A. ; Debolskiy, A. V. ; Mortikov, E. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-aa89e58c977496cf750e3ed29f8ee53cb843986b63e054ece869c94ba2a126453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Central processing units</topic><topic>Computer simulation</topic><topic>CPUs</topic><topic>Geometry</topic><topic>Graphics processing units</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ocean models</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaschuk, E. M.</creatorcontrib><creatorcontrib>Ezhkova, A. A.</creatorcontrib><creatorcontrib>Onoprienko, V. A.</creatorcontrib><creatorcontrib>Debolskiy, A. V.</creatorcontrib><creatorcontrib>Mortikov, E. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaschuk, E. M.</au><au>Ezhkova, A. A.</au><au>Onoprienko, V. A.</au><au>Debolskiy, A. V.</au><au>Mortikov, E. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passive Tracer Transport in Ocean Modeling: Implementation on GPUs, Efficiency and Optimizations</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>44</volume><issue>8</issue><spage>3040</spage><epage>3058</epage><pages>3040-3058</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>Numerical simulation of the ocean general circulation remains one of the most computationally demanding problems. For both climate and forecast research, the speedup of the calculations is still an ongoing challenge. This problem can be remedied by developing new computationally efficient algorithms. Another, and in fact complementary, approach is to utilize massively parallel coprocessors such as Graphics Processing Units (GPUs). In this study, we consider the GPU implementation efficiency of the advection schemes commonly used in tracer transport algorithms for ocean modeling and compare it with the implementation on a Central Processing Unit (CPU). The simulations on refined grids were found to be highly efficient when implemented on the GPU, in contrast to the coarse resolution. We also consider a number of optimization techniques to improve GPU efficiency in the latter case.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080223080152</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2023-08, Vol.44 (8), p.3040-3058
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2894911247
source SpringerLink Journals - AutoHoldings
subjects Algebra
Algorithms
Analysis
Central processing units
Computer simulation
CPUs
Geometry
Graphics processing units
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Ocean models
Probability Theory and Stochastic Processes
title Passive Tracer Transport in Ocean Modeling: Implementation on GPUs, Efficiency and Optimizations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A55%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passive%20Tracer%20Transport%20in%20Ocean%20Modeling:%20Implementation%20on%20GPUs,%20Efficiency%20and%20Optimizations&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Gaschuk,%20E.%20M.&rft.date=2023-08-01&rft.volume=44&rft.issue=8&rft.spage=3040&rft.epage=3058&rft.pages=3040-3058&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080223080152&rft_dat=%3Cproquest_cross%3E2894911247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894911247&rft_id=info:pmid/&rfr_iscdi=true