Efficient Gradient Estimation via Adaptive Sampling and Importance Sampling

Machine learning problems rely heavily on stochastic gradient descent (SGD) for optimization. The effectiveness of SGD is contingent upon accurately estimating gradients from a mini-batch of data samples. Instead of the commonly used uniform sampling, adaptive or importance sampling reduces noise in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-11
Hauptverfasser: Salaün, Corentin, Huang, Xingchang, Georgiev, Iliyan, Mitra, Niloy J, Singh, Gurprit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Salaün, Corentin
Huang, Xingchang
Georgiev, Iliyan
Mitra, Niloy J
Singh, Gurprit
description Machine learning problems rely heavily on stochastic gradient descent (SGD) for optimization. The effectiveness of SGD is contingent upon accurately estimating gradients from a mini-batch of data samples. Instead of the commonly used uniform sampling, adaptive or importance sampling reduces noise in gradient estimation by forming mini-batches that prioritize crucial data points. Previous research has suggested that data points should be selected with probabilities proportional to their gradient norm. Nevertheless, existing algorithms have struggled to efficiently integrate importance sampling into machine learning frameworks. In this work, we make two contributions. First, we present an algorithm that can incorporate existing importance functions into our framework. Second, we propose a simplified importance function that relies solely on the loss gradient of the output layer. By leveraging our proposed gradient estimation techniques, we observe improved convergence in classification and regression tasks with minimal computational overhead. We validate the effectiveness of our adaptive and importance-sampling approach on image and point-cloud datasets.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2894592188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894592188</sourcerecordid><originalsourceid>FETCH-proquest_journals_28945921883</originalsourceid><addsrcrecordid>eNqNissKwjAQRYMgWLT_EHBdqJNW06VIfeBS92VoU5nSJjFJ-_2KCG5d3cM5d8YiEGKTyAxgwWLvuzRNYbuDPBcRu5ZtSzUpHfjJYfOB0gcaMJDRfCLk-wZtoEnxGw62J_3gqBt-GaxxAXX98ys2b7H3Kv7ukq2P5f1wTqwzz1H5UHVmdPqdKpBFlhewkVL893oBDio9QQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894592188</pqid></control><display><type>article</type><title>Efficient Gradient Estimation via Adaptive Sampling and Importance Sampling</title><source>Free E- Journals</source><creator>Salaün, Corentin ; Huang, Xingchang ; Georgiev, Iliyan ; Mitra, Niloy J ; Singh, Gurprit</creator><creatorcontrib>Salaün, Corentin ; Huang, Xingchang ; Georgiev, Iliyan ; Mitra, Niloy J ; Singh, Gurprit</creatorcontrib><description>Machine learning problems rely heavily on stochastic gradient descent (SGD) for optimization. The effectiveness of SGD is contingent upon accurately estimating gradients from a mini-batch of data samples. Instead of the commonly used uniform sampling, adaptive or importance sampling reduces noise in gradient estimation by forming mini-batches that prioritize crucial data points. Previous research has suggested that data points should be selected with probabilities proportional to their gradient norm. Nevertheless, existing algorithms have struggled to efficiently integrate importance sampling into machine learning frameworks. In this work, we make two contributions. First, we present an algorithm that can incorporate existing importance functions into our framework. Second, we propose a simplified importance function that relies solely on the loss gradient of the output layer. By leveraging our proposed gradient estimation techniques, we observe improved convergence in classification and regression tasks with minimal computational overhead. We validate the effectiveness of our adaptive and importance-sampling approach on image and point-cloud datasets.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adaptive sampling ; Algorithms ; Data points ; Effectiveness ; Estimation ; Importance sampling ; Machine learning</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Salaün, Corentin</creatorcontrib><creatorcontrib>Huang, Xingchang</creatorcontrib><creatorcontrib>Georgiev, Iliyan</creatorcontrib><creatorcontrib>Mitra, Niloy J</creatorcontrib><creatorcontrib>Singh, Gurprit</creatorcontrib><title>Efficient Gradient Estimation via Adaptive Sampling and Importance Sampling</title><title>arXiv.org</title><description>Machine learning problems rely heavily on stochastic gradient descent (SGD) for optimization. The effectiveness of SGD is contingent upon accurately estimating gradients from a mini-batch of data samples. Instead of the commonly used uniform sampling, adaptive or importance sampling reduces noise in gradient estimation by forming mini-batches that prioritize crucial data points. Previous research has suggested that data points should be selected with probabilities proportional to their gradient norm. Nevertheless, existing algorithms have struggled to efficiently integrate importance sampling into machine learning frameworks. In this work, we make two contributions. First, we present an algorithm that can incorporate existing importance functions into our framework. Second, we propose a simplified importance function that relies solely on the loss gradient of the output layer. By leveraging our proposed gradient estimation techniques, we observe improved convergence in classification and regression tasks with minimal computational overhead. We validate the effectiveness of our adaptive and importance-sampling approach on image and point-cloud datasets.</description><subject>Adaptive sampling</subject><subject>Algorithms</subject><subject>Data points</subject><subject>Effectiveness</subject><subject>Estimation</subject><subject>Importance sampling</subject><subject>Machine learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNissKwjAQRYMgWLT_EHBdqJNW06VIfeBS92VoU5nSJjFJ-_2KCG5d3cM5d8YiEGKTyAxgwWLvuzRNYbuDPBcRu5ZtSzUpHfjJYfOB0gcaMJDRfCLk-wZtoEnxGw62J_3gqBt-GaxxAXX98ys2b7H3Kv7ukq2P5f1wTqwzz1H5UHVmdPqdKpBFlhewkVL893oBDio9QQ</recordid><startdate>20231127</startdate><enddate>20231127</enddate><creator>Salaün, Corentin</creator><creator>Huang, Xingchang</creator><creator>Georgiev, Iliyan</creator><creator>Mitra, Niloy J</creator><creator>Singh, Gurprit</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231127</creationdate><title>Efficient Gradient Estimation via Adaptive Sampling and Importance Sampling</title><author>Salaün, Corentin ; Huang, Xingchang ; Georgiev, Iliyan ; Mitra, Niloy J ; Singh, Gurprit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28945921883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive sampling</topic><topic>Algorithms</topic><topic>Data points</topic><topic>Effectiveness</topic><topic>Estimation</topic><topic>Importance sampling</topic><topic>Machine learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Salaün, Corentin</creatorcontrib><creatorcontrib>Huang, Xingchang</creatorcontrib><creatorcontrib>Georgiev, Iliyan</creatorcontrib><creatorcontrib>Mitra, Niloy J</creatorcontrib><creatorcontrib>Singh, Gurprit</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salaün, Corentin</au><au>Huang, Xingchang</au><au>Georgiev, Iliyan</au><au>Mitra, Niloy J</au><au>Singh, Gurprit</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Efficient Gradient Estimation via Adaptive Sampling and Importance Sampling</atitle><jtitle>arXiv.org</jtitle><date>2023-11-27</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Machine learning problems rely heavily on stochastic gradient descent (SGD) for optimization. The effectiveness of SGD is contingent upon accurately estimating gradients from a mini-batch of data samples. Instead of the commonly used uniform sampling, adaptive or importance sampling reduces noise in gradient estimation by forming mini-batches that prioritize crucial data points. Previous research has suggested that data points should be selected with probabilities proportional to their gradient norm. Nevertheless, existing algorithms have struggled to efficiently integrate importance sampling into machine learning frameworks. In this work, we make two contributions. First, we present an algorithm that can incorporate existing importance functions into our framework. Second, we propose a simplified importance function that relies solely on the loss gradient of the output layer. By leveraging our proposed gradient estimation techniques, we observe improved convergence in classification and regression tasks with minimal computational overhead. We validate the effectiveness of our adaptive and importance-sampling approach on image and point-cloud datasets.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2894592188
source Free E- Journals
subjects Adaptive sampling
Algorithms
Data points
Effectiveness
Estimation
Importance sampling
Machine learning
title Efficient Gradient Estimation via Adaptive Sampling and Importance Sampling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A59%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Efficient%20Gradient%20Estimation%20via%20Adaptive%20Sampling%20and%20Importance%20Sampling&rft.jtitle=arXiv.org&rft.au=Sala%C3%BCn,%20Corentin&rft.date=2023-11-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2894592188%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894592188&rft_id=info:pmid/&rfr_iscdi=true