Increasing Coverage and Precision of Textual Information in Multilingual Knowledge Graphs
Recent work in Natural Language Processing and Computer Vision has been using textual information -- e.g., entity names and descriptions -- available in knowledge graphs to ground neural models to high-quality structured data. However, when it comes to non-English languages, the quantity and quality...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-11 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Conia, Simone Li, Min Lee, Daniel Umar Farooq Minhas Ilyas, Ihab Li, Yunyao |
description | Recent work in Natural Language Processing and Computer Vision has been using textual information -- e.g., entity names and descriptions -- available in knowledge graphs to ground neural models to high-quality structured data. However, when it comes to non-English languages, the quantity and quality of textual information are comparatively scarce. To address this issue, we introduce the novel task of automatic Knowledge Graph Enhancement (KGE) and perform a thorough investigation on bridging the gap in both the quantity and quality of textual information between English and non-English languages. More specifically, we: i) bring to light the problem of increasing multilingual coverage and precision of entity names and descriptions in Wikidata; ii) demonstrate that state-of-the-art methods, namely, Machine Translation (MT), Web Search (WS), and Large Language Models (LLMs), struggle with this task; iii) present M-NTA, a novel unsupervised approach that combines MT, WS, and LLMs to generate high-quality textual information; and, iv) study the impact of increasing multilingual coverage and precision of non-English textual information in Entity Linking, Knowledge Graph Completion, and Question Answering. As part of our effort towards better multilingual knowledge graphs, we also introduce WikiKGE-10, the first human-curated benchmark to evaluate KGE approaches in 10 languages across 7 language families. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2894592140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894592140</sourcerecordid><originalsourceid>FETCH-proquest_journals_28945921403</originalsourceid><addsrcrecordid>eNqNi8sKgkAYRocgSMp3GGgtjDNaupYuEkGLNq1k0F8bmWZsLtXjp9ADtPrgO-fMUEAZi6MsoXSBQmt7QgjdbGmasgDdSlUb4FaoDhf6BYZ3gLlq8MVALazQCusWX-HjPJe4VK02D-6mWyh89tIJOaYTOyn9ltCM-cHw4W5XaN5yaSH87RKt97trcYwGo58erKt67Y0aUUWzPElzGieE_Wd9AQVmQpk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894592140</pqid></control><display><type>article</type><title>Increasing Coverage and Precision of Textual Information in Multilingual Knowledge Graphs</title><source>Free E- Journals</source><creator>Conia, Simone ; Li, Min ; Lee, Daniel ; Umar Farooq Minhas ; Ilyas, Ihab ; Li, Yunyao</creator><creatorcontrib>Conia, Simone ; Li, Min ; Lee, Daniel ; Umar Farooq Minhas ; Ilyas, Ihab ; Li, Yunyao</creatorcontrib><description>Recent work in Natural Language Processing and Computer Vision has been using textual information -- e.g., entity names and descriptions -- available in knowledge graphs to ground neural models to high-quality structured data. However, when it comes to non-English languages, the quantity and quality of textual information are comparatively scarce. To address this issue, we introduce the novel task of automatic Knowledge Graph Enhancement (KGE) and perform a thorough investigation on bridging the gap in both the quantity and quality of textual information between English and non-English languages. More specifically, we: i) bring to light the problem of increasing multilingual coverage and precision of entity names and descriptions in Wikidata; ii) demonstrate that state-of-the-art methods, namely, Machine Translation (MT), Web Search (WS), and Large Language Models (LLMs), struggle with this task; iii) present M-NTA, a novel unsupervised approach that combines MT, WS, and LLMs to generate high-quality textual information; and, iv) study the impact of increasing multilingual coverage and precision of non-English textual information in Entity Linking, Knowledge Graph Completion, and Question Answering. As part of our effort towards better multilingual knowledge graphs, we also introduce WikiKGE-10, the first human-curated benchmark to evaluate KGE approaches in 10 languages across 7 language families.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer vision ; Descriptions ; English language ; Graphs ; Knowledge representation ; Large language models ; Machine translation ; Multilingualism ; Natural language processing ; Non-English languages ; Structured data</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Conia, Simone</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Lee, Daniel</creatorcontrib><creatorcontrib>Umar Farooq Minhas</creatorcontrib><creatorcontrib>Ilyas, Ihab</creatorcontrib><creatorcontrib>Li, Yunyao</creatorcontrib><title>Increasing Coverage and Precision of Textual Information in Multilingual Knowledge Graphs</title><title>arXiv.org</title><description>Recent work in Natural Language Processing and Computer Vision has been using textual information -- e.g., entity names and descriptions -- available in knowledge graphs to ground neural models to high-quality structured data. However, when it comes to non-English languages, the quantity and quality of textual information are comparatively scarce. To address this issue, we introduce the novel task of automatic Knowledge Graph Enhancement (KGE) and perform a thorough investigation on bridging the gap in both the quantity and quality of textual information between English and non-English languages. More specifically, we: i) bring to light the problem of increasing multilingual coverage and precision of entity names and descriptions in Wikidata; ii) demonstrate that state-of-the-art methods, namely, Machine Translation (MT), Web Search (WS), and Large Language Models (LLMs), struggle with this task; iii) present M-NTA, a novel unsupervised approach that combines MT, WS, and LLMs to generate high-quality textual information; and, iv) study the impact of increasing multilingual coverage and precision of non-English textual information in Entity Linking, Knowledge Graph Completion, and Question Answering. As part of our effort towards better multilingual knowledge graphs, we also introduce WikiKGE-10, the first human-curated benchmark to evaluate KGE approaches in 10 languages across 7 language families.</description><subject>Computer vision</subject><subject>Descriptions</subject><subject>English language</subject><subject>Graphs</subject><subject>Knowledge representation</subject><subject>Large language models</subject><subject>Machine translation</subject><subject>Multilingualism</subject><subject>Natural language processing</subject><subject>Non-English languages</subject><subject>Structured data</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8sKgkAYRocgSMp3GGgtjDNaupYuEkGLNq1k0F8bmWZsLtXjp9ADtPrgO-fMUEAZi6MsoXSBQmt7QgjdbGmasgDdSlUb4FaoDhf6BYZ3gLlq8MVALazQCusWX-HjPJe4VK02D-6mWyh89tIJOaYTOyn9ltCM-cHw4W5XaN5yaSH87RKt97trcYwGo58erKt67Y0aUUWzPElzGieE_Wd9AQVmQpk</recordid><startdate>20231127</startdate><enddate>20231127</enddate><creator>Conia, Simone</creator><creator>Li, Min</creator><creator>Lee, Daniel</creator><creator>Umar Farooq Minhas</creator><creator>Ilyas, Ihab</creator><creator>Li, Yunyao</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231127</creationdate><title>Increasing Coverage and Precision of Textual Information in Multilingual Knowledge Graphs</title><author>Conia, Simone ; Li, Min ; Lee, Daniel ; Umar Farooq Minhas ; Ilyas, Ihab ; Li, Yunyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28945921403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer vision</topic><topic>Descriptions</topic><topic>English language</topic><topic>Graphs</topic><topic>Knowledge representation</topic><topic>Large language models</topic><topic>Machine translation</topic><topic>Multilingualism</topic><topic>Natural language processing</topic><topic>Non-English languages</topic><topic>Structured data</topic><toplevel>online_resources</toplevel><creatorcontrib>Conia, Simone</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Lee, Daniel</creatorcontrib><creatorcontrib>Umar Farooq Minhas</creatorcontrib><creatorcontrib>Ilyas, Ihab</creatorcontrib><creatorcontrib>Li, Yunyao</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conia, Simone</au><au>Li, Min</au><au>Lee, Daniel</au><au>Umar Farooq Minhas</au><au>Ilyas, Ihab</au><au>Li, Yunyao</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Increasing Coverage and Precision of Textual Information in Multilingual Knowledge Graphs</atitle><jtitle>arXiv.org</jtitle><date>2023-11-27</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Recent work in Natural Language Processing and Computer Vision has been using textual information -- e.g., entity names and descriptions -- available in knowledge graphs to ground neural models to high-quality structured data. However, when it comes to non-English languages, the quantity and quality of textual information are comparatively scarce. To address this issue, we introduce the novel task of automatic Knowledge Graph Enhancement (KGE) and perform a thorough investigation on bridging the gap in both the quantity and quality of textual information between English and non-English languages. More specifically, we: i) bring to light the problem of increasing multilingual coverage and precision of entity names and descriptions in Wikidata; ii) demonstrate that state-of-the-art methods, namely, Machine Translation (MT), Web Search (WS), and Large Language Models (LLMs), struggle with this task; iii) present M-NTA, a novel unsupervised approach that combines MT, WS, and LLMs to generate high-quality textual information; and, iv) study the impact of increasing multilingual coverage and precision of non-English textual information in Entity Linking, Knowledge Graph Completion, and Question Answering. As part of our effort towards better multilingual knowledge graphs, we also introduce WikiKGE-10, the first human-curated benchmark to evaluate KGE approaches in 10 languages across 7 language families.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2894592140 |
source | Free E- Journals |
subjects | Computer vision Descriptions English language Graphs Knowledge representation Large language models Machine translation Multilingualism Natural language processing Non-English languages Structured data |
title | Increasing Coverage and Precision of Textual Information in Multilingual Knowledge Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Increasing%20Coverage%20and%20Precision%20of%20Textual%20Information%20in%20Multilingual%20Knowledge%20Graphs&rft.jtitle=arXiv.org&rft.au=Conia,%20Simone&rft.date=2023-11-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2894592140%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894592140&rft_id=info:pmid/&rfr_iscdi=true |