Direct2.5: Diverse Text-to-3D Generation via Multi-view 2.5D Diffusion
Recent advances in generative AI have unveiled significant potential for the creation of 3D content. However, current methods either apply a pre-trained 2D diffusion model with the time-consuming score distillation sampling (SDS), or a direct 3D diffusion model trained on limited 3D data losing gene...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lu, Yuanxun Zhang, Jingyang Li, Shiwei Tian Fang McKinnon, David Tsin, Yanghai Long, Quan Cao, Xun Yao, Yao |
description | Recent advances in generative AI have unveiled significant potential for the creation of 3D content. However, current methods either apply a pre-trained 2D diffusion model with the time-consuming score distillation sampling (SDS), or a direct 3D diffusion model trained on limited 3D data losing generation diversity. In this work, we approach the problem by employing a multi-view 2.5D diffusion fine-tuned from a pre-trained 2D diffusion model. The multi-view 2.5D diffusion directly models the structural distribution of 3D data, while still maintaining the strong generalization ability of the original 2D diffusion model, filling the gap between 2D diffusion-based and direct 3D diffusion-based methods for 3D content generation. During inference, multi-view normal maps are generated using the 2.5D diffusion, and a novel differentiable rasterization scheme is introduced to fuse the almost consistent multi-view normal maps into a consistent 3D model. We further design a normal-conditioned multi-view image generation module for fast appearance generation given the 3D geometry. Our method is a one-pass diffusion process and does not require any SDS optimization as post-processing. We demonstrate through extensive experiments that, our direct 2.5D generation with the specially-designed fusion scheme can achieve diverse, mode-seeking-free, and high-fidelity 3D content generation in only 10 seconds. Project page: https://nju-3dv.github.io/projects/direct25. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2894583073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894583073</sourcerecordid><originalsourceid>FETCH-proquest_journals_28945830733</originalsourceid><addsrcrecordid>eNqNi7sKwjAUQIMgWLT_EHCOxHsbW12N1cWteylyCyml0Tyqn28GP8DpDOecBcsAcS-qAmDFcu8HKSUcSlAKM1Zr4-gRYKdOXJuZnCfe0CeIYAVqfqWJXBeMnfhsOn6PYzBiNvTm6dDp6Pvok92wZd-NnvIf12xbX5rzTTydfUXyoR1sdFNSLVTHQlUoS8T_qi-dlDkh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894583073</pqid></control><display><type>article</type><title>Direct2.5: Diverse Text-to-3D Generation via Multi-view 2.5D Diffusion</title><source>Free E- Journals</source><creator>Lu, Yuanxun ; Zhang, Jingyang ; Li, Shiwei ; Tian Fang ; McKinnon, David ; Tsin, Yanghai ; Long, Quan ; Cao, Xun ; Yao, Yao</creator><creatorcontrib>Lu, Yuanxun ; Zhang, Jingyang ; Li, Shiwei ; Tian Fang ; McKinnon, David ; Tsin, Yanghai ; Long, Quan ; Cao, Xun ; Yao, Yao</creatorcontrib><description>Recent advances in generative AI have unveiled significant potential for the creation of 3D content. However, current methods either apply a pre-trained 2D diffusion model with the time-consuming score distillation sampling (SDS), or a direct 3D diffusion model trained on limited 3D data losing generation diversity. In this work, we approach the problem by employing a multi-view 2.5D diffusion fine-tuned from a pre-trained 2D diffusion model. The multi-view 2.5D diffusion directly models the structural distribution of 3D data, while still maintaining the strong generalization ability of the original 2D diffusion model, filling the gap between 2D diffusion-based and direct 3D diffusion-based methods for 3D content generation. During inference, multi-view normal maps are generated using the 2.5D diffusion, and a novel differentiable rasterization scheme is introduced to fuse the almost consistent multi-view normal maps into a consistent 3D model. We further design a normal-conditioned multi-view image generation module for fast appearance generation given the 3D geometry. Our method is a one-pass diffusion process and does not require any SDS optimization as post-processing. We demonstrate through extensive experiments that, our direct 2.5D generation with the specially-designed fusion scheme can achieve diverse, mode-seeking-free, and high-fidelity 3D content generation in only 10 seconds. Project page: https://nju-3dv.github.io/projects/direct25.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Distillation ; Image processing ; Three dimensional models ; Two dimensional models</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lu, Yuanxun</creatorcontrib><creatorcontrib>Zhang, Jingyang</creatorcontrib><creatorcontrib>Li, Shiwei</creatorcontrib><creatorcontrib>Tian Fang</creatorcontrib><creatorcontrib>McKinnon, David</creatorcontrib><creatorcontrib>Tsin, Yanghai</creatorcontrib><creatorcontrib>Long, Quan</creatorcontrib><creatorcontrib>Cao, Xun</creatorcontrib><creatorcontrib>Yao, Yao</creatorcontrib><title>Direct2.5: Diverse Text-to-3D Generation via Multi-view 2.5D Diffusion</title><title>arXiv.org</title><description>Recent advances in generative AI have unveiled significant potential for the creation of 3D content. However, current methods either apply a pre-trained 2D diffusion model with the time-consuming score distillation sampling (SDS), or a direct 3D diffusion model trained on limited 3D data losing generation diversity. In this work, we approach the problem by employing a multi-view 2.5D diffusion fine-tuned from a pre-trained 2D diffusion model. The multi-view 2.5D diffusion directly models the structural distribution of 3D data, while still maintaining the strong generalization ability of the original 2D diffusion model, filling the gap between 2D diffusion-based and direct 3D diffusion-based methods for 3D content generation. During inference, multi-view normal maps are generated using the 2.5D diffusion, and a novel differentiable rasterization scheme is introduced to fuse the almost consistent multi-view normal maps into a consistent 3D model. We further design a normal-conditioned multi-view image generation module for fast appearance generation given the 3D geometry. Our method is a one-pass diffusion process and does not require any SDS optimization as post-processing. We demonstrate through extensive experiments that, our direct 2.5D generation with the specially-designed fusion scheme can achieve diverse, mode-seeking-free, and high-fidelity 3D content generation in only 10 seconds. Project page: https://nju-3dv.github.io/projects/direct25.</description><subject>Distillation</subject><subject>Image processing</subject><subject>Three dimensional models</subject><subject>Two dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi7sKwjAUQIMgWLT_EHCOxHsbW12N1cWteylyCyml0Tyqn28GP8DpDOecBcsAcS-qAmDFcu8HKSUcSlAKM1Zr4-gRYKdOXJuZnCfe0CeIYAVqfqWJXBeMnfhsOn6PYzBiNvTm6dDp6Pvok92wZd-NnvIf12xbX5rzTTydfUXyoR1sdFNSLVTHQlUoS8T_qi-dlDkh</recordid><startdate>20240321</startdate><enddate>20240321</enddate><creator>Lu, Yuanxun</creator><creator>Zhang, Jingyang</creator><creator>Li, Shiwei</creator><creator>Tian Fang</creator><creator>McKinnon, David</creator><creator>Tsin, Yanghai</creator><creator>Long, Quan</creator><creator>Cao, Xun</creator><creator>Yao, Yao</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240321</creationdate><title>Direct2.5: Diverse Text-to-3D Generation via Multi-view 2.5D Diffusion</title><author>Lu, Yuanxun ; Zhang, Jingyang ; Li, Shiwei ; Tian Fang ; McKinnon, David ; Tsin, Yanghai ; Long, Quan ; Cao, Xun ; Yao, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28945830733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Distillation</topic><topic>Image processing</topic><topic>Three dimensional models</topic><topic>Two dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yuanxun</creatorcontrib><creatorcontrib>Zhang, Jingyang</creatorcontrib><creatorcontrib>Li, Shiwei</creatorcontrib><creatorcontrib>Tian Fang</creatorcontrib><creatorcontrib>McKinnon, David</creatorcontrib><creatorcontrib>Tsin, Yanghai</creatorcontrib><creatorcontrib>Long, Quan</creatorcontrib><creatorcontrib>Cao, Xun</creatorcontrib><creatorcontrib>Yao, Yao</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yuanxun</au><au>Zhang, Jingyang</au><au>Li, Shiwei</au><au>Tian Fang</au><au>McKinnon, David</au><au>Tsin, Yanghai</au><au>Long, Quan</au><au>Cao, Xun</au><au>Yao, Yao</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Direct2.5: Diverse Text-to-3D Generation via Multi-view 2.5D Diffusion</atitle><jtitle>arXiv.org</jtitle><date>2024-03-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Recent advances in generative AI have unveiled significant potential for the creation of 3D content. However, current methods either apply a pre-trained 2D diffusion model with the time-consuming score distillation sampling (SDS), or a direct 3D diffusion model trained on limited 3D data losing generation diversity. In this work, we approach the problem by employing a multi-view 2.5D diffusion fine-tuned from a pre-trained 2D diffusion model. The multi-view 2.5D diffusion directly models the structural distribution of 3D data, while still maintaining the strong generalization ability of the original 2D diffusion model, filling the gap between 2D diffusion-based and direct 3D diffusion-based methods for 3D content generation. During inference, multi-view normal maps are generated using the 2.5D diffusion, and a novel differentiable rasterization scheme is introduced to fuse the almost consistent multi-view normal maps into a consistent 3D model. We further design a normal-conditioned multi-view image generation module for fast appearance generation given the 3D geometry. Our method is a one-pass diffusion process and does not require any SDS optimization as post-processing. We demonstrate through extensive experiments that, our direct 2.5D generation with the specially-designed fusion scheme can achieve diverse, mode-seeking-free, and high-fidelity 3D content generation in only 10 seconds. Project page: https://nju-3dv.github.io/projects/direct25.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2894583073 |
source | Free E- Journals |
subjects | Distillation Image processing Three dimensional models Two dimensional models |
title | Direct2.5: Diverse Text-to-3D Generation via Multi-view 2.5D Diffusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A30%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Direct2.5:%20Diverse%20Text-to-3D%20Generation%20via%20Multi-view%202.5D%20Diffusion&rft.jtitle=arXiv.org&rft.au=Lu,%20Yuanxun&rft.date=2024-03-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2894583073%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894583073&rft_id=info:pmid/&rfr_iscdi=true |