Hyperspectral dimensionality reduction based on SAE-1DCNN feature selection approach

Hyperspectral remote sensing enables a detailed spectral description of the object’s surface, but it also introduces high redundancy because the narrow contiguous spectral bands are highly correlated. This has two consequences, the Hughes phenomenon and increased processing effort due to the amount...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied geomatics 2023-12, Vol.15 (4), p.991-1004
Hauptverfasser: Jijón-Palma, Mario Ernesto, Amisse, Caisse, Centeno, Jorge Antonio Silva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1004
container_issue 4
container_start_page 991
container_title Applied geomatics
container_volume 15
creator Jijón-Palma, Mario Ernesto
Amisse, Caisse
Centeno, Jorge Antonio Silva
description Hyperspectral remote sensing enables a detailed spectral description of the object’s surface, but it also introduces high redundancy because the narrow contiguous spectral bands are highly correlated. This has two consequences, the Hughes phenomenon and increased processing effort due to the amount of data. In the present study, it is introduced a model that integrates stacked-autoencoders and convolutional neural networks to solve the spectral redundancy problem based on the feature selection approach. Feature selection has a great advantage over feature extraction in that it does not perform any transformation on the original data and avoids the loss of information in such a transformation. The proposed model used a convolutional stacked-autoencoder to learn to represent the input data into an optimized set of high-level features. Once the SAE is learned to represent the optimal features, the decoder part is replaced with regular layers of neurons for reduce redundancy. The advantage of the proposed model is that it allows the automatic selection and extraction of representative features from a dataset preserving the meaningful information of the original bands to improve the thematic classification of hyperspectral images. Several experiments were performed using two hyperspectral data sets (Indian Pines and Salinas) belonging to the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) sensor to evaluate the performance of the proposed method. The analysis of the results showed precision and effectiveness in the proposed model when compared with other feature selection approaches for dimensionality reduction. This model can therefore be used as an alternative for dimensionality reduction.
doi_str_mv 10.1007/s12518-023-00535-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2894438996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A774406708</galeid><sourcerecordid>A774406708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-fc24e626ad9a170c7b64820acf95aeb2121b2782056cb8ec768619a7824bb05d3</originalsourceid><addsrcrecordid>eNp9kV9LwzAUxYsoOHRfwKeCTz5kJmmaP49jTh3IBDfBt5Cmt7Oja2vSgvv2ZlaUvZg85ObyOzcnnCi6InhCMBa3ntCUSIRpgjBOkxTxk2hEJOdIUfl2-lsreR6Nvd_iwxI4ZXQUrR_3LTjfgu2cqeK83EHty6Y2VdntYwd5b7twjTPjIY9DsZrOEbmbLZdxAabrHcQeKhgg07auMfb9MjorTOVh_HNeRK_38_XsET09Pyxm0ydkE5Z0qLCUAafc5MoQga3IOJMUG1uo1EBGCSUZFaGTcptJsIJLTpQJHZZlOM2Ti-h6mBue_ejBd3rb9C5495pKxVgileKBmgzUxlSgy7powldt2DnsStvUUJShPxWCMcwFlkFwcyQITAef3cb03uvF6uWYpQNrXeO9g0K3rtwZt9cE60M6ekhHh3T0dzr64CgZRD7A9Qbcn-9_VF-Az5B3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894438996</pqid></control><display><type>article</type><title>Hyperspectral dimensionality reduction based on SAE-1DCNN feature selection approach</title><source>Springer Nature - Complete Springer Journals</source><creator>Jijón-Palma, Mario Ernesto ; Amisse, Caisse ; Centeno, Jorge Antonio Silva</creator><creatorcontrib>Jijón-Palma, Mario Ernesto ; Amisse, Caisse ; Centeno, Jorge Antonio Silva</creatorcontrib><description>Hyperspectral remote sensing enables a detailed spectral description of the object’s surface, but it also introduces high redundancy because the narrow contiguous spectral bands are highly correlated. This has two consequences, the Hughes phenomenon and increased processing effort due to the amount of data. In the present study, it is introduced a model that integrates stacked-autoencoders and convolutional neural networks to solve the spectral redundancy problem based on the feature selection approach. Feature selection has a great advantage over feature extraction in that it does not perform any transformation on the original data and avoids the loss of information in such a transformation. The proposed model used a convolutional stacked-autoencoder to learn to represent the input data into an optimized set of high-level features. Once the SAE is learned to represent the optimal features, the decoder part is replaced with regular layers of neurons for reduce redundancy. The advantage of the proposed model is that it allows the automatic selection and extraction of representative features from a dataset preserving the meaningful information of the original bands to improve the thematic classification of hyperspectral images. Several experiments were performed using two hyperspectral data sets (Indian Pines and Salinas) belonging to the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) sensor to evaluate the performance of the proposed method. The analysis of the results showed precision and effectiveness in the proposed model when compared with other feature selection approaches for dimensionality reduction. This model can therefore be used as an alternative for dimensionality reduction.</description><identifier>ISSN: 1866-9298</identifier><identifier>EISSN: 1866-928X</identifier><identifier>DOI: 10.1007/s12518-023-00535-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Earth and Environmental Science ; Feature selection ; Geographical Information Systems/Cartography ; Geography ; Geophysics/Geodesy ; Infrared imaging ; Measurement Science and Instrumentation ; Neural networks ; Original Paper ; Remote sensing ; Remote Sensing/Photogrammetry ; Surveying</subject><ispartof>Applied geomatics, 2023-12, Vol.15 (4), p.991-1004</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fotogrammetria e Topografia (SIFET) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-fc24e626ad9a170c7b64820acf95aeb2121b2782056cb8ec768619a7824bb05d3</cites><orcidid>0000-0002-2669-7147 ; 0000-0001-9458-5510 ; 0000-0003-4890-2997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12518-023-00535-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12518-023-00535-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jijón-Palma, Mario Ernesto</creatorcontrib><creatorcontrib>Amisse, Caisse</creatorcontrib><creatorcontrib>Centeno, Jorge Antonio Silva</creatorcontrib><title>Hyperspectral dimensionality reduction based on SAE-1DCNN feature selection approach</title><title>Applied geomatics</title><addtitle>Appl Geomat</addtitle><description>Hyperspectral remote sensing enables a detailed spectral description of the object’s surface, but it also introduces high redundancy because the narrow contiguous spectral bands are highly correlated. This has two consequences, the Hughes phenomenon and increased processing effort due to the amount of data. In the present study, it is introduced a model that integrates stacked-autoencoders and convolutional neural networks to solve the spectral redundancy problem based on the feature selection approach. Feature selection has a great advantage over feature extraction in that it does not perform any transformation on the original data and avoids the loss of information in such a transformation. The proposed model used a convolutional stacked-autoencoder to learn to represent the input data into an optimized set of high-level features. Once the SAE is learned to represent the optimal features, the decoder part is replaced with regular layers of neurons for reduce redundancy. The advantage of the proposed model is that it allows the automatic selection and extraction of representative features from a dataset preserving the meaningful information of the original bands to improve the thematic classification of hyperspectral images. Several experiments were performed using two hyperspectral data sets (Indian Pines and Salinas) belonging to the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) sensor to evaluate the performance of the proposed method. The analysis of the results showed precision and effectiveness in the proposed model when compared with other feature selection approaches for dimensionality reduction. This model can therefore be used as an alternative for dimensionality reduction.</description><subject>Earth and Environmental Science</subject><subject>Feature selection</subject><subject>Geographical Information Systems/Cartography</subject><subject>Geography</subject><subject>Geophysics/Geodesy</subject><subject>Infrared imaging</subject><subject>Measurement Science and Instrumentation</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Remote sensing</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Surveying</subject><issn>1866-9298</issn><issn>1866-928X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kV9LwzAUxYsoOHRfwKeCTz5kJmmaP49jTh3IBDfBt5Cmt7Oja2vSgvv2ZlaUvZg85ObyOzcnnCi6InhCMBa3ntCUSIRpgjBOkxTxk2hEJOdIUfl2-lsreR6Nvd_iwxI4ZXQUrR_3LTjfgu2cqeK83EHty6Y2VdntYwd5b7twjTPjIY9DsZrOEbmbLZdxAabrHcQeKhgg07auMfb9MjorTOVh_HNeRK_38_XsET09Pyxm0ydkE5Z0qLCUAafc5MoQga3IOJMUG1uo1EBGCSUZFaGTcptJsIJLTpQJHZZlOM2Ti-h6mBue_ejBd3rb9C5495pKxVgileKBmgzUxlSgy7powldt2DnsStvUUJShPxWCMcwFlkFwcyQITAef3cb03uvF6uWYpQNrXeO9g0K3rtwZt9cE60M6ekhHh3T0dzr64CgZRD7A9Qbcn-9_VF-Az5B3</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Jijón-Palma, Mario Ernesto</creator><creator>Amisse, Caisse</creator><creator>Centeno, Jorge Antonio Silva</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-2669-7147</orcidid><orcidid>https://orcid.org/0000-0001-9458-5510</orcidid><orcidid>https://orcid.org/0000-0003-4890-2997</orcidid></search><sort><creationdate>20231201</creationdate><title>Hyperspectral dimensionality reduction based on SAE-1DCNN feature selection approach</title><author>Jijón-Palma, Mario Ernesto ; Amisse, Caisse ; Centeno, Jorge Antonio Silva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-fc24e626ad9a170c7b64820acf95aeb2121b2782056cb8ec768619a7824bb05d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Earth and Environmental Science</topic><topic>Feature selection</topic><topic>Geographical Information Systems/Cartography</topic><topic>Geography</topic><topic>Geophysics/Geodesy</topic><topic>Infrared imaging</topic><topic>Measurement Science and Instrumentation</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Remote sensing</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Surveying</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jijón-Palma, Mario Ernesto</creatorcontrib><creatorcontrib>Amisse, Caisse</creatorcontrib><creatorcontrib>Centeno, Jorge Antonio Silva</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Applied geomatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jijón-Palma, Mario Ernesto</au><au>Amisse, Caisse</au><au>Centeno, Jorge Antonio Silva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral dimensionality reduction based on SAE-1DCNN feature selection approach</atitle><jtitle>Applied geomatics</jtitle><stitle>Appl Geomat</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>15</volume><issue>4</issue><spage>991</spage><epage>1004</epage><pages>991-1004</pages><issn>1866-9298</issn><eissn>1866-928X</eissn><abstract>Hyperspectral remote sensing enables a detailed spectral description of the object’s surface, but it also introduces high redundancy because the narrow contiguous spectral bands are highly correlated. This has two consequences, the Hughes phenomenon and increased processing effort due to the amount of data. In the present study, it is introduced a model that integrates stacked-autoencoders and convolutional neural networks to solve the spectral redundancy problem based on the feature selection approach. Feature selection has a great advantage over feature extraction in that it does not perform any transformation on the original data and avoids the loss of information in such a transformation. The proposed model used a convolutional stacked-autoencoder to learn to represent the input data into an optimized set of high-level features. Once the SAE is learned to represent the optimal features, the decoder part is replaced with regular layers of neurons for reduce redundancy. The advantage of the proposed model is that it allows the automatic selection and extraction of representative features from a dataset preserving the meaningful information of the original bands to improve the thematic classification of hyperspectral images. Several experiments were performed using two hyperspectral data sets (Indian Pines and Salinas) belonging to the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) sensor to evaluate the performance of the proposed method. The analysis of the results showed precision and effectiveness in the proposed model when compared with other feature selection approaches for dimensionality reduction. This model can therefore be used as an alternative for dimensionality reduction.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12518-023-00535-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2669-7147</orcidid><orcidid>https://orcid.org/0000-0001-9458-5510</orcidid><orcidid>https://orcid.org/0000-0003-4890-2997</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1866-9298
ispartof Applied geomatics, 2023-12, Vol.15 (4), p.991-1004
issn 1866-9298
1866-928X
language eng
recordid cdi_proquest_journals_2894438996
source Springer Nature - Complete Springer Journals
subjects Earth and Environmental Science
Feature selection
Geographical Information Systems/Cartography
Geography
Geophysics/Geodesy
Infrared imaging
Measurement Science and Instrumentation
Neural networks
Original Paper
Remote sensing
Remote Sensing/Photogrammetry
Surveying
title Hyperspectral dimensionality reduction based on SAE-1DCNN feature selection approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20dimensionality%20reduction%20based%20on%20SAE-1DCNN%20feature%20selection%20approach&rft.jtitle=Applied%20geomatics&rft.au=Jij%C3%B3n-Palma,%20Mario%20Ernesto&rft.date=2023-12-01&rft.volume=15&rft.issue=4&rft.spage=991&rft.epage=1004&rft.pages=991-1004&rft.issn=1866-9298&rft.eissn=1866-928X&rft_id=info:doi/10.1007/s12518-023-00535-6&rft_dat=%3Cgale_proqu%3EA774406708%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894438996&rft_id=info:pmid/&rft_galeid=A774406708&rfr_iscdi=true