Hyperspectral dimensionality reduction based on SAE-1DCNN feature selection approach
Hyperspectral remote sensing enables a detailed spectral description of the object’s surface, but it also introduces high redundancy because the narrow contiguous spectral bands are highly correlated. This has two consequences, the Hughes phenomenon and increased processing effort due to the amount...
Gespeichert in:
Veröffentlicht in: | Applied geomatics 2023-12, Vol.15 (4), p.991-1004 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1004 |
---|---|
container_issue | 4 |
container_start_page | 991 |
container_title | Applied geomatics |
container_volume | 15 |
creator | Jijón-Palma, Mario Ernesto Amisse, Caisse Centeno, Jorge Antonio Silva |
description | Hyperspectral remote sensing enables a detailed spectral description of the object’s surface, but it also introduces high redundancy because the narrow contiguous spectral bands are highly correlated. This has two consequences, the Hughes phenomenon and increased processing effort due to the amount of data. In the present study, it is introduced a model that integrates stacked-autoencoders and convolutional neural networks to solve the spectral redundancy problem based on the feature selection approach. Feature selection has a great advantage over feature extraction in that it does not perform any transformation on the original data and avoids the loss of information in such a transformation. The proposed model used a convolutional stacked-autoencoder to learn to represent the input data into an optimized set of high-level features. Once the SAE is learned to represent the optimal features, the decoder part is replaced with regular layers of neurons for reduce redundancy. The advantage of the proposed model is that it allows the automatic selection and extraction of representative features from a dataset preserving the meaningful information of the original bands to improve the thematic classification of hyperspectral images. Several experiments were performed using two hyperspectral data sets (Indian Pines and Salinas) belonging to the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) sensor to evaluate the performance of the proposed method. The analysis of the results showed precision and effectiveness in the proposed model when compared with other feature selection approaches for dimensionality reduction. This model can therefore be used as an alternative for dimensionality reduction. |
doi_str_mv | 10.1007/s12518-023-00535-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2894438996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A774406708</galeid><sourcerecordid>A774406708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-fc24e626ad9a170c7b64820acf95aeb2121b2782056cb8ec768619a7824bb05d3</originalsourceid><addsrcrecordid>eNp9kV9LwzAUxYsoOHRfwKeCTz5kJmmaP49jTh3IBDfBt5Cmt7Oja2vSgvv2ZlaUvZg85ObyOzcnnCi6InhCMBa3ntCUSIRpgjBOkxTxk2hEJOdIUfl2-lsreR6Nvd_iwxI4ZXQUrR_3LTjfgu2cqeK83EHty6Y2VdntYwd5b7twjTPjIY9DsZrOEbmbLZdxAabrHcQeKhgg07auMfb9MjorTOVh_HNeRK_38_XsET09Pyxm0ydkE5Z0qLCUAafc5MoQga3IOJMUG1uo1EBGCSUZFaGTcptJsIJLTpQJHZZlOM2Ti-h6mBue_ejBd3rb9C5495pKxVgileKBmgzUxlSgy7powldt2DnsStvUUJShPxWCMcwFlkFwcyQITAef3cb03uvF6uWYpQNrXeO9g0K3rtwZt9cE60M6ekhHh3T0dzr64CgZRD7A9Qbcn-9_VF-Az5B3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894438996</pqid></control><display><type>article</type><title>Hyperspectral dimensionality reduction based on SAE-1DCNN feature selection approach</title><source>Springer Nature - Complete Springer Journals</source><creator>Jijón-Palma, Mario Ernesto ; Amisse, Caisse ; Centeno, Jorge Antonio Silva</creator><creatorcontrib>Jijón-Palma, Mario Ernesto ; Amisse, Caisse ; Centeno, Jorge Antonio Silva</creatorcontrib><description>Hyperspectral remote sensing enables a detailed spectral description of the object’s surface, but it also introduces high redundancy because the narrow contiguous spectral bands are highly correlated. This has two consequences, the Hughes phenomenon and increased processing effort due to the amount of data. In the present study, it is introduced a model that integrates stacked-autoencoders and convolutional neural networks to solve the spectral redundancy problem based on the feature selection approach. Feature selection has a great advantage over feature extraction in that it does not perform any transformation on the original data and avoids the loss of information in such a transformation. The proposed model used a convolutional stacked-autoencoder to learn to represent the input data into an optimized set of high-level features. Once the SAE is learned to represent the optimal features, the decoder part is replaced with regular layers of neurons for reduce redundancy. The advantage of the proposed model is that it allows the automatic selection and extraction of representative features from a dataset preserving the meaningful information of the original bands to improve the thematic classification of hyperspectral images. Several experiments were performed using two hyperspectral data sets (Indian Pines and Salinas) belonging to the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) sensor to evaluate the performance of the proposed method. The analysis of the results showed precision and effectiveness in the proposed model when compared with other feature selection approaches for dimensionality reduction. This model can therefore be used as an alternative for dimensionality reduction.</description><identifier>ISSN: 1866-9298</identifier><identifier>EISSN: 1866-928X</identifier><identifier>DOI: 10.1007/s12518-023-00535-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Earth and Environmental Science ; Feature selection ; Geographical Information Systems/Cartography ; Geography ; Geophysics/Geodesy ; Infrared imaging ; Measurement Science and Instrumentation ; Neural networks ; Original Paper ; Remote sensing ; Remote Sensing/Photogrammetry ; Surveying</subject><ispartof>Applied geomatics, 2023-12, Vol.15 (4), p.991-1004</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fotogrammetria e Topografia (SIFET) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-fc24e626ad9a170c7b64820acf95aeb2121b2782056cb8ec768619a7824bb05d3</cites><orcidid>0000-0002-2669-7147 ; 0000-0001-9458-5510 ; 0000-0003-4890-2997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12518-023-00535-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12518-023-00535-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jijón-Palma, Mario Ernesto</creatorcontrib><creatorcontrib>Amisse, Caisse</creatorcontrib><creatorcontrib>Centeno, Jorge Antonio Silva</creatorcontrib><title>Hyperspectral dimensionality reduction based on SAE-1DCNN feature selection approach</title><title>Applied geomatics</title><addtitle>Appl Geomat</addtitle><description>Hyperspectral remote sensing enables a detailed spectral description of the object’s surface, but it also introduces high redundancy because the narrow contiguous spectral bands are highly correlated. This has two consequences, the Hughes phenomenon and increased processing effort due to the amount of data. In the present study, it is introduced a model that integrates stacked-autoencoders and convolutional neural networks to solve the spectral redundancy problem based on the feature selection approach. Feature selection has a great advantage over feature extraction in that it does not perform any transformation on the original data and avoids the loss of information in such a transformation. The proposed model used a convolutional stacked-autoencoder to learn to represent the input data into an optimized set of high-level features. Once the SAE is learned to represent the optimal features, the decoder part is replaced with regular layers of neurons for reduce redundancy. The advantage of the proposed model is that it allows the automatic selection and extraction of representative features from a dataset preserving the meaningful information of the original bands to improve the thematic classification of hyperspectral images. Several experiments were performed using two hyperspectral data sets (Indian Pines and Salinas) belonging to the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) sensor to evaluate the performance of the proposed method. The analysis of the results showed precision and effectiveness in the proposed model when compared with other feature selection approaches for dimensionality reduction. This model can therefore be used as an alternative for dimensionality reduction.</description><subject>Earth and Environmental Science</subject><subject>Feature selection</subject><subject>Geographical Information Systems/Cartography</subject><subject>Geography</subject><subject>Geophysics/Geodesy</subject><subject>Infrared imaging</subject><subject>Measurement Science and Instrumentation</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Remote sensing</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Surveying</subject><issn>1866-9298</issn><issn>1866-928X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kV9LwzAUxYsoOHRfwKeCTz5kJmmaP49jTh3IBDfBt5Cmt7Oja2vSgvv2ZlaUvZg85ObyOzcnnCi6InhCMBa3ntCUSIRpgjBOkxTxk2hEJOdIUfl2-lsreR6Nvd_iwxI4ZXQUrR_3LTjfgu2cqeK83EHty6Y2VdntYwd5b7twjTPjIY9DsZrOEbmbLZdxAabrHcQeKhgg07auMfb9MjorTOVh_HNeRK_38_XsET09Pyxm0ydkE5Z0qLCUAafc5MoQga3IOJMUG1uo1EBGCSUZFaGTcptJsIJLTpQJHZZlOM2Ti-h6mBue_ejBd3rb9C5495pKxVgileKBmgzUxlSgy7powldt2DnsStvUUJShPxWCMcwFlkFwcyQITAef3cb03uvF6uWYpQNrXeO9g0K3rtwZt9cE60M6ekhHh3T0dzr64CgZRD7A9Qbcn-9_VF-Az5B3</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Jijón-Palma, Mario Ernesto</creator><creator>Amisse, Caisse</creator><creator>Centeno, Jorge Antonio Silva</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-2669-7147</orcidid><orcidid>https://orcid.org/0000-0001-9458-5510</orcidid><orcidid>https://orcid.org/0000-0003-4890-2997</orcidid></search><sort><creationdate>20231201</creationdate><title>Hyperspectral dimensionality reduction based on SAE-1DCNN feature selection approach</title><author>Jijón-Palma, Mario Ernesto ; Amisse, Caisse ; Centeno, Jorge Antonio Silva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-fc24e626ad9a170c7b64820acf95aeb2121b2782056cb8ec768619a7824bb05d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Earth and Environmental Science</topic><topic>Feature selection</topic><topic>Geographical Information Systems/Cartography</topic><topic>Geography</topic><topic>Geophysics/Geodesy</topic><topic>Infrared imaging</topic><topic>Measurement Science and Instrumentation</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Remote sensing</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Surveying</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jijón-Palma, Mario Ernesto</creatorcontrib><creatorcontrib>Amisse, Caisse</creatorcontrib><creatorcontrib>Centeno, Jorge Antonio Silva</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Applied geomatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jijón-Palma, Mario Ernesto</au><au>Amisse, Caisse</au><au>Centeno, Jorge Antonio Silva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral dimensionality reduction based on SAE-1DCNN feature selection approach</atitle><jtitle>Applied geomatics</jtitle><stitle>Appl Geomat</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>15</volume><issue>4</issue><spage>991</spage><epage>1004</epage><pages>991-1004</pages><issn>1866-9298</issn><eissn>1866-928X</eissn><abstract>Hyperspectral remote sensing enables a detailed spectral description of the object’s surface, but it also introduces high redundancy because the narrow contiguous spectral bands are highly correlated. This has two consequences, the Hughes phenomenon and increased processing effort due to the amount of data. In the present study, it is introduced a model that integrates stacked-autoencoders and convolutional neural networks to solve the spectral redundancy problem based on the feature selection approach. Feature selection has a great advantage over feature extraction in that it does not perform any transformation on the original data and avoids the loss of information in such a transformation. The proposed model used a convolutional stacked-autoencoder to learn to represent the input data into an optimized set of high-level features. Once the SAE is learned to represent the optimal features, the decoder part is replaced with regular layers of neurons for reduce redundancy. The advantage of the proposed model is that it allows the automatic selection and extraction of representative features from a dataset preserving the meaningful information of the original bands to improve the thematic classification of hyperspectral images. Several experiments were performed using two hyperspectral data sets (Indian Pines and Salinas) belonging to the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) sensor to evaluate the performance of the proposed method. The analysis of the results showed precision and effectiveness in the proposed model when compared with other feature selection approaches for dimensionality reduction. This model can therefore be used as an alternative for dimensionality reduction.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12518-023-00535-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2669-7147</orcidid><orcidid>https://orcid.org/0000-0001-9458-5510</orcidid><orcidid>https://orcid.org/0000-0003-4890-2997</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1866-9298 |
ispartof | Applied geomatics, 2023-12, Vol.15 (4), p.991-1004 |
issn | 1866-9298 1866-928X |
language | eng |
recordid | cdi_proquest_journals_2894438996 |
source | Springer Nature - Complete Springer Journals |
subjects | Earth and Environmental Science Feature selection Geographical Information Systems/Cartography Geography Geophysics/Geodesy Infrared imaging Measurement Science and Instrumentation Neural networks Original Paper Remote sensing Remote Sensing/Photogrammetry Surveying |
title | Hyperspectral dimensionality reduction based on SAE-1DCNN feature selection approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20dimensionality%20reduction%20based%20on%20SAE-1DCNN%20feature%20selection%20approach&rft.jtitle=Applied%20geomatics&rft.au=Jij%C3%B3n-Palma,%20Mario%20Ernesto&rft.date=2023-12-01&rft.volume=15&rft.issue=4&rft.spage=991&rft.epage=1004&rft.pages=991-1004&rft.issn=1866-9298&rft.eissn=1866-928X&rft_id=info:doi/10.1007/s12518-023-00535-6&rft_dat=%3Cgale_proqu%3EA774406708%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894438996&rft_id=info:pmid/&rft_galeid=A774406708&rfr_iscdi=true |