Anodic Behavior of Lithium-Alloyed Lead–Antimony Alloy SSu3 in NaCl Electrolyte

— This paper presents corrosion and electrochemical characterization data illustrating the effect of 0.05–1.0 wt % lithium as a structure modifier on the anodic behavior of lead–antimony alloy SSu3 (Pb + 3 wt % Sb) in NaCl electrolyte. The alloy was studied potentiostatically in potentiodynamic mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic materials 2023-03, Vol.59 (3), p.257-263
Hauptverfasser: Ganiev, I. N., Okilov, Sh. Sh, Mulloeva, N. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 263
container_issue 3
container_start_page 257
container_title Inorganic materials
container_volume 59
creator Ganiev, I. N.
Okilov, Sh. Sh
Mulloeva, N. M.
description — This paper presents corrosion and electrochemical characterization data illustrating the effect of 0.05–1.0 wt % lithium as a structure modifier on the anodic behavior of lead–antimony alloy SSu3 (Pb + 3 wt % Sb) in NaCl electrolyte. The alloy was studied potentiostatically in potentiodynamic mode at a potential sweep rate of 2 mV/s. The results demonstrate that increasing the concentration of the aqueous NaCl solution shifts the corrosion, pitting, and repassivation potentials of the alloys to negative values. The free corrosion potential of the alloys shifts over time to positive values. The same occurs with increasing lithium concentration in SSu3. Moreover, increasing the NaCl concentration in the electrolyte increases the corrosion rate of the alloys, independent of their composition. Lithium additions to SSu3 improve its corrosion resistance. The alloys have been shown to corrode by the pitting mechanism. Acting as a structure modifier, lithium increases their pitting and repassivation potentials, improving the pitting corrosion resistance of the alloys and helping to eliminate emerging pitting corrosion spots.
doi_str_mv 10.1134/S0020168523030068
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2894431746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894431746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2f5f66b82f9dfcd439ab6795cfc8fd45da5cf498e69569acbc049aaa2b87d5d43</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssQ74FddehoqXFIFQYR05flBXaVzsBCk7_oE_5EtIKRILxGpGc8-d0VwATjE6x5iyiwVCBGEuckIRRYiLPTDBHImM4hnZB5OtnG31Q3CU0gohxHIhJ-CxaIPxGl7apXrzIcLgYOm7pe_XWdE0YbAGllaZz_ePou38OrQD_J7DxaKn0LfwXs0beNVY3cXQDJ09BgdONcme_NQpeL6-eprfZuXDzd28KDNNMe8y4nLHeS2Ik8Zpw6hUNZ_JXDstnGG5UWPLpLBc5lwqXWvEpFKK1GJm8pGfgrPd3k0Mr71NXbUKfWzHkxURkrHxccZHCu8oHUNK0bpqE_1axaHCqNomV_1JbvSQnSeNbPti4-_m_01foX5wQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894431746</pqid></control><display><type>article</type><title>Anodic Behavior of Lithium-Alloyed Lead–Antimony Alloy SSu3 in NaCl Electrolyte</title><source>Springer Nature - Complete Springer Journals</source><creator>Ganiev, I. N. ; Okilov, Sh. Sh ; Mulloeva, N. M.</creator><creatorcontrib>Ganiev, I. N. ; Okilov, Sh. Sh ; Mulloeva, N. M.</creatorcontrib><description>— This paper presents corrosion and electrochemical characterization data illustrating the effect of 0.05–1.0 wt % lithium as a structure modifier on the anodic behavior of lead–antimony alloy SSu3 (Pb + 3 wt % Sb) in NaCl electrolyte. The alloy was studied potentiostatically in potentiodynamic mode at a potential sweep rate of 2 mV/s. The results demonstrate that increasing the concentration of the aqueous NaCl solution shifts the corrosion, pitting, and repassivation potentials of the alloys to negative values. The free corrosion potential of the alloys shifts over time to positive values. The same occurs with increasing lithium concentration in SSu3. Moreover, increasing the NaCl concentration in the electrolyte increases the corrosion rate of the alloys, independent of their composition. Lithium additions to SSu3 improve its corrosion resistance. The alloys have been shown to corrode by the pitting mechanism. Acting as a structure modifier, lithium increases their pitting and repassivation potentials, improving the pitting corrosion resistance of the alloys and helping to eliminate emerging pitting corrosion spots.</description><identifier>ISSN: 0020-1685</identifier><identifier>EISSN: 1608-3172</identifier><identifier>DOI: 10.1134/S0020168523030068</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Alloys ; Antimony ; Chemistry ; Chemistry and Materials Science ; Corrosion effects ; Corrosion potential ; Corrosion rate ; Corrosion resistance ; Corrosion resistant alloys ; Electrochemical analysis ; Electrolytes ; Industrial Chemistry/Chemical Engineering ; Inorganic Chemistry ; Lead base alloys ; Lithium ; Materials Science ; Pitting (corrosion) ; Potential sweep rate ; Repassivation ; Sodium chloride</subject><ispartof>Inorganic materials, 2023-03, Vol.59 (3), p.257-263</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 0020-1685, Inorganic Materials, 2023, Vol. 59, No. 3, pp. 257–263. © Pleiades Publishing, Ltd., 2023. ISSN 0020-1685, Inorganic Materials, 2023. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Neorganicheskie Materialy, 2023, Vol. 59, No. 3, pp. 266–272.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2f5f66b82f9dfcd439ab6795cfc8fd45da5cf498e69569acbc049aaa2b87d5d43</citedby><cites>FETCH-LOGICAL-c316t-2f5f66b82f9dfcd439ab6795cfc8fd45da5cf498e69569acbc049aaa2b87d5d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0020168523030068$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0020168523030068$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Ganiev, I. N.</creatorcontrib><creatorcontrib>Okilov, Sh. Sh</creatorcontrib><creatorcontrib>Mulloeva, N. M.</creatorcontrib><title>Anodic Behavior of Lithium-Alloyed Lead–Antimony Alloy SSu3 in NaCl Electrolyte</title><title>Inorganic materials</title><addtitle>Inorg Mater</addtitle><description>— This paper presents corrosion and electrochemical characterization data illustrating the effect of 0.05–1.0 wt % lithium as a structure modifier on the anodic behavior of lead–antimony alloy SSu3 (Pb + 3 wt % Sb) in NaCl electrolyte. The alloy was studied potentiostatically in potentiodynamic mode at a potential sweep rate of 2 mV/s. The results demonstrate that increasing the concentration of the aqueous NaCl solution shifts the corrosion, pitting, and repassivation potentials of the alloys to negative values. The free corrosion potential of the alloys shifts over time to positive values. The same occurs with increasing lithium concentration in SSu3. Moreover, increasing the NaCl concentration in the electrolyte increases the corrosion rate of the alloys, independent of their composition. Lithium additions to SSu3 improve its corrosion resistance. The alloys have been shown to corrode by the pitting mechanism. Acting as a structure modifier, lithium increases their pitting and repassivation potentials, improving the pitting corrosion resistance of the alloys and helping to eliminate emerging pitting corrosion spots.</description><subject>Alloys</subject><subject>Antimony</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion effects</subject><subject>Corrosion potential</subject><subject>Corrosion rate</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant alloys</subject><subject>Electrochemical analysis</subject><subject>Electrolytes</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Inorganic Chemistry</subject><subject>Lead base alloys</subject><subject>Lithium</subject><subject>Materials Science</subject><subject>Pitting (corrosion)</subject><subject>Potential sweep rate</subject><subject>Repassivation</subject><subject>Sodium chloride</subject><issn>0020-1685</issn><issn>1608-3172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssQ74FddehoqXFIFQYR05flBXaVzsBCk7_oE_5EtIKRILxGpGc8-d0VwATjE6x5iyiwVCBGEuckIRRYiLPTDBHImM4hnZB5OtnG31Q3CU0gohxHIhJ-CxaIPxGl7apXrzIcLgYOm7pe_XWdE0YbAGllaZz_ePou38OrQD_J7DxaKn0LfwXs0beNVY3cXQDJ09BgdONcme_NQpeL6-eprfZuXDzd28KDNNMe8y4nLHeS2Ik8Zpw6hUNZ_JXDstnGG5UWPLpLBc5lwqXWvEpFKK1GJm8pGfgrPd3k0Mr71NXbUKfWzHkxURkrHxccZHCu8oHUNK0bpqE_1axaHCqNomV_1JbvSQnSeNbPti4-_m_01foX5wQQ</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Ganiev, I. N.</creator><creator>Okilov, Sh. Sh</creator><creator>Mulloeva, N. M.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230301</creationdate><title>Anodic Behavior of Lithium-Alloyed Lead–Antimony Alloy SSu3 in NaCl Electrolyte</title><author>Ganiev, I. N. ; Okilov, Sh. Sh ; Mulloeva, N. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2f5f66b82f9dfcd439ab6795cfc8fd45da5cf498e69569acbc049aaa2b87d5d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Antimony</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion effects</topic><topic>Corrosion potential</topic><topic>Corrosion rate</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant alloys</topic><topic>Electrochemical analysis</topic><topic>Electrolytes</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Inorganic Chemistry</topic><topic>Lead base alloys</topic><topic>Lithium</topic><topic>Materials Science</topic><topic>Pitting (corrosion)</topic><topic>Potential sweep rate</topic><topic>Repassivation</topic><topic>Sodium chloride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganiev, I. N.</creatorcontrib><creatorcontrib>Okilov, Sh. Sh</creatorcontrib><creatorcontrib>Mulloeva, N. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Inorganic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganiev, I. N.</au><au>Okilov, Sh. Sh</au><au>Mulloeva, N. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anodic Behavior of Lithium-Alloyed Lead–Antimony Alloy SSu3 in NaCl Electrolyte</atitle><jtitle>Inorganic materials</jtitle><stitle>Inorg Mater</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>59</volume><issue>3</issue><spage>257</spage><epage>263</epage><pages>257-263</pages><issn>0020-1685</issn><eissn>1608-3172</eissn><abstract>— This paper presents corrosion and electrochemical characterization data illustrating the effect of 0.05–1.0 wt % lithium as a structure modifier on the anodic behavior of lead–antimony alloy SSu3 (Pb + 3 wt % Sb) in NaCl electrolyte. The alloy was studied potentiostatically in potentiodynamic mode at a potential sweep rate of 2 mV/s. The results demonstrate that increasing the concentration of the aqueous NaCl solution shifts the corrosion, pitting, and repassivation potentials of the alloys to negative values. The free corrosion potential of the alloys shifts over time to positive values. The same occurs with increasing lithium concentration in SSu3. Moreover, increasing the NaCl concentration in the electrolyte increases the corrosion rate of the alloys, independent of their composition. Lithium additions to SSu3 improve its corrosion resistance. The alloys have been shown to corrode by the pitting mechanism. Acting as a structure modifier, lithium increases their pitting and repassivation potentials, improving the pitting corrosion resistance of the alloys and helping to eliminate emerging pitting corrosion spots.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0020168523030068</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-1685
ispartof Inorganic materials, 2023-03, Vol.59 (3), p.257-263
issn 0020-1685
1608-3172
language eng
recordid cdi_proquest_journals_2894431746
source Springer Nature - Complete Springer Journals
subjects Alloys
Antimony
Chemistry
Chemistry and Materials Science
Corrosion effects
Corrosion potential
Corrosion rate
Corrosion resistance
Corrosion resistant alloys
Electrochemical analysis
Electrolytes
Industrial Chemistry/Chemical Engineering
Inorganic Chemistry
Lead base alloys
Lithium
Materials Science
Pitting (corrosion)
Potential sweep rate
Repassivation
Sodium chloride
title Anodic Behavior of Lithium-Alloyed Lead–Antimony Alloy SSu3 in NaCl Electrolyte
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A38%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anodic%20Behavior%20of%20Lithium-Alloyed%20Lead%E2%80%93Antimony%20Alloy%20SSu3%20in%20NaCl%20Electrolyte&rft.jtitle=Inorganic%20materials&rft.au=Ganiev,%20I.%20N.&rft.date=2023-03-01&rft.volume=59&rft.issue=3&rft.spage=257&rft.epage=263&rft.pages=257-263&rft.issn=0020-1685&rft.eissn=1608-3172&rft_id=info:doi/10.1134/S0020168523030068&rft_dat=%3Cproquest_cross%3E2894431746%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894431746&rft_id=info:pmid/&rfr_iscdi=true