Visualising flight regimes using self-organising maps
The purpose of this paper is to group the flight data phases based on the sensor readings that are most distinctive and to create a representation of the higher-dimensional input space as a two-dimensional cluster map. The research design includes a self-organising map framework that provides spatia...
Gespeichert in:
Veröffentlicht in: | Aeronautical journal 2023-10, Vol.127 (1316), p.1817-1831 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1831 |
---|---|
container_issue | 1316 |
container_start_page | 1817 |
container_title | Aeronautical journal |
container_volume | 127 |
creator | Bektas, O. |
description | The purpose of this paper is to group the flight data phases based on the sensor readings that are most distinctive and to create a representation of the higher-dimensional input space as a two-dimensional cluster map. The research design includes a self-organising map framework that provides spatially organised representations of flight signal features and abstractions. Flight data are mapped on a topology-preserving organisation that describes the similarity of their content. The findings reveal that there is a significant correlation between monitored flight data signals and given flight data phases. In addition, the clusters of flight regimes can be determined and observed on the maps. This suggests that further flight data processing schemes can use the same data marking and mapping themes regarding flight phases when working on a regime basis. The contribution of the research is the grouping of real data flows produced by in-flight sensors for aircraft monitoring purposes, thus visualising the evolution of the signal monitored on a real aircraft. |
doi_str_mv | 10.1017/aer.2023.71 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2894250355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894250355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-2c6f510b424e374e57def746fe146f91ec9913f9f9124e02f7f72f07fa4f478a3</originalsourceid><addsrcrecordid>eNotkE1LxDAQhoMoWFdP_oGCR0mdfDWboyy6Cgte1GuINVOztNuatAf_vVnrZWYYHt4XHkKuGVQMmL5zPlYcuKg0OyEFB2VoLWt5SgoAYNRwCefkIqU9gAAuZUHUe0iz60IKh7bELrRfUxl9G3qfyvnvmXyHdIitOyxQ78Z0Sc7Qdclf_e8VeXt8eN080d3L9nlzv6MNZ2aivKlRMfiQXHqhpVf606OWNXqWh2G-MYYJNPnMBHDUqDmCRidR6rUTK3Kz5I5x-J59mux-mOMhV1q-NpIrEEpl6nahmjikFD3aMYbexR_LwB692OzFHr1YzcQv16dVAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894250355</pqid></control><display><type>article</type><title>Visualising flight regimes using self-organising maps</title><source>Cambridge University Press Journals Complete</source><creator>Bektas, O.</creator><creatorcontrib>Bektas, O.</creatorcontrib><description>The purpose of this paper is to group the flight data phases based on the sensor readings that are most distinctive and to create a representation of the higher-dimensional input space as a two-dimensional cluster map. The research design includes a self-organising map framework that provides spatially organised representations of flight signal features and abstractions. Flight data are mapped on a topology-preserving organisation that describes the similarity of their content. The findings reveal that there is a significant correlation between monitored flight data signals and given flight data phases. In addition, the clusters of flight regimes can be determined and observed on the maps. This suggests that further flight data processing schemes can use the same data marking and mapping themes regarding flight phases when working on a regime basis. The contribution of the research is the grouping of real data flows produced by in-flight sensors for aircraft monitoring purposes, thus visualising the evolution of the signal monitored on a real aircraft.</description><identifier>ISSN: 0001-9240</identifier><identifier>EISSN: 2059-6464</identifier><identifier>DOI: 10.1017/aer.2023.71</identifier><language>eng</language><publisher>London: Cambridge University Press</publisher><subject>Aircraft ; Cluster analysis ; Clustering ; Data analysis ; Data processing ; Datasets ; Energy consumption ; Flight ; In-flight monitoring ; Neighborhoods ; Neurons ; Phases ; Representations ; Self organizing maps ; Signal monitoring ; Signal processing ; Topology</subject><ispartof>Aeronautical journal, 2023-10, Vol.127 (1316), p.1817-1831</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press on behalf of Royal Aeronautical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-2c6f510b424e374e57def746fe146f91ec9913f9f9124e02f7f72f07fa4f478a3</cites><orcidid>0000-0003-3687-3703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids></links><search><creatorcontrib>Bektas, O.</creatorcontrib><title>Visualising flight regimes using self-organising maps</title><title>Aeronautical journal</title><description>The purpose of this paper is to group the flight data phases based on the sensor readings that are most distinctive and to create a representation of the higher-dimensional input space as a two-dimensional cluster map. The research design includes a self-organising map framework that provides spatially organised representations of flight signal features and abstractions. Flight data are mapped on a topology-preserving organisation that describes the similarity of their content. The findings reveal that there is a significant correlation between monitored flight data signals and given flight data phases. In addition, the clusters of flight regimes can be determined and observed on the maps. This suggests that further flight data processing schemes can use the same data marking and mapping themes regarding flight phases when working on a regime basis. The contribution of the research is the grouping of real data flows produced by in-flight sensors for aircraft monitoring purposes, thus visualising the evolution of the signal monitored on a real aircraft.</description><subject>Aircraft</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Energy consumption</subject><subject>Flight</subject><subject>In-flight monitoring</subject><subject>Neighborhoods</subject><subject>Neurons</subject><subject>Phases</subject><subject>Representations</subject><subject>Self organizing maps</subject><subject>Signal monitoring</subject><subject>Signal processing</subject><subject>Topology</subject><issn>0001-9240</issn><issn>2059-6464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE1LxDAQhoMoWFdP_oGCR0mdfDWboyy6Cgte1GuINVOztNuatAf_vVnrZWYYHt4XHkKuGVQMmL5zPlYcuKg0OyEFB2VoLWt5SgoAYNRwCefkIqU9gAAuZUHUe0iz60IKh7bELrRfUxl9G3qfyvnvmXyHdIitOyxQ78Z0Sc7Qdclf_e8VeXt8eN080d3L9nlzv6MNZ2aivKlRMfiQXHqhpVf606OWNXqWh2G-MYYJNPnMBHDUqDmCRidR6rUTK3Kz5I5x-J59mux-mOMhV1q-NpIrEEpl6nahmjikFD3aMYbexR_LwB692OzFHr1YzcQv16dVAA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Bektas, O.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3687-3703</orcidid></search><sort><creationdate>20231001</creationdate><title>Visualising flight regimes using self-organising maps</title><author>Bektas, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-2c6f510b424e374e57def746fe146f91ec9913f9f9124e02f7f72f07fa4f478a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aircraft</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Energy consumption</topic><topic>Flight</topic><topic>In-flight monitoring</topic><topic>Neighborhoods</topic><topic>Neurons</topic><topic>Phases</topic><topic>Representations</topic><topic>Self organizing maps</topic><topic>Signal monitoring</topic><topic>Signal processing</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bektas, O.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Aeronautical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bektas, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualising flight regimes using self-organising maps</atitle><jtitle>Aeronautical journal</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>127</volume><issue>1316</issue><spage>1817</spage><epage>1831</epage><pages>1817-1831</pages><issn>0001-9240</issn><eissn>2059-6464</eissn><abstract>The purpose of this paper is to group the flight data phases based on the sensor readings that are most distinctive and to create a representation of the higher-dimensional input space as a two-dimensional cluster map. The research design includes a self-organising map framework that provides spatially organised representations of flight signal features and abstractions. Flight data are mapped on a topology-preserving organisation that describes the similarity of their content. The findings reveal that there is a significant correlation between monitored flight data signals and given flight data phases. In addition, the clusters of flight regimes can be determined and observed on the maps. This suggests that further flight data processing schemes can use the same data marking and mapping themes regarding flight phases when working on a regime basis. The contribution of the research is the grouping of real data flows produced by in-flight sensors for aircraft monitoring purposes, thus visualising the evolution of the signal monitored on a real aircraft.</abstract><cop>London</cop><pub>Cambridge University Press</pub><doi>10.1017/aer.2023.71</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3687-3703</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-9240 |
ispartof | Aeronautical journal, 2023-10, Vol.127 (1316), p.1817-1831 |
issn | 0001-9240 2059-6464 |
language | eng |
recordid | cdi_proquest_journals_2894250355 |
source | Cambridge University Press Journals Complete |
subjects | Aircraft Cluster analysis Clustering Data analysis Data processing Datasets Energy consumption Flight In-flight monitoring Neighborhoods Neurons Phases Representations Self organizing maps Signal monitoring Signal processing Topology |
title | Visualising flight regimes using self-organising maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T12%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualising%20flight%20regimes%20using%20self-organising%20maps&rft.jtitle=Aeronautical%20journal&rft.au=Bektas,%20O.&rft.date=2023-10-01&rft.volume=127&rft.issue=1316&rft.spage=1817&rft.epage=1831&rft.pages=1817-1831&rft.issn=0001-9240&rft.eissn=2059-6464&rft_id=info:doi/10.1017/aer.2023.71&rft_dat=%3Cproquest_cross%3E2894250355%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894250355&rft_id=info:pmid/&rfr_iscdi=true |