Visualising flight regimes using self-organising maps

The purpose of this paper is to group the flight data phases based on the sensor readings that are most distinctive and to create a representation of the higher-dimensional input space as a two-dimensional cluster map. The research design includes a self-organising map framework that provides spatia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aeronautical journal 2023-10, Vol.127 (1316), p.1817-1831
1. Verfasser: Bektas, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1831
container_issue 1316
container_start_page 1817
container_title Aeronautical journal
container_volume 127
creator Bektas, O.
description The purpose of this paper is to group the flight data phases based on the sensor readings that are most distinctive and to create a representation of the higher-dimensional input space as a two-dimensional cluster map. The research design includes a self-organising map framework that provides spatially organised representations of flight signal features and abstractions. Flight data are mapped on a topology-preserving organisation that describes the similarity of their content. The findings reveal that there is a significant correlation between monitored flight data signals and given flight data phases. In addition, the clusters of flight regimes can be determined and observed on the maps. This suggests that further flight data processing schemes can use the same data marking and mapping themes regarding flight phases when working on a regime basis. The contribution of the research is the grouping of real data flows produced by in-flight sensors for aircraft monitoring purposes, thus visualising the evolution of the signal monitored on a real aircraft.
doi_str_mv 10.1017/aer.2023.71
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2894250355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894250355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-2c6f510b424e374e57def746fe146f91ec9913f9f9124e02f7f72f07fa4f478a3</originalsourceid><addsrcrecordid>eNotkE1LxDAQhoMoWFdP_oGCR0mdfDWboyy6Cgte1GuINVOztNuatAf_vVnrZWYYHt4XHkKuGVQMmL5zPlYcuKg0OyEFB2VoLWt5SgoAYNRwCefkIqU9gAAuZUHUe0iz60IKh7bELrRfUxl9G3qfyvnvmXyHdIitOyxQ78Z0Sc7Qdclf_e8VeXt8eN080d3L9nlzv6MNZ2aivKlRMfiQXHqhpVf606OWNXqWh2G-MYYJNPnMBHDUqDmCRidR6rUTK3Kz5I5x-J59mux-mOMhV1q-NpIrEEpl6nahmjikFD3aMYbexR_LwB692OzFHr1YzcQv16dVAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894250355</pqid></control><display><type>article</type><title>Visualising flight regimes using self-organising maps</title><source>Cambridge University Press Journals Complete</source><creator>Bektas, O.</creator><creatorcontrib>Bektas, O.</creatorcontrib><description>The purpose of this paper is to group the flight data phases based on the sensor readings that are most distinctive and to create a representation of the higher-dimensional input space as a two-dimensional cluster map. The research design includes a self-organising map framework that provides spatially organised representations of flight signal features and abstractions. Flight data are mapped on a topology-preserving organisation that describes the similarity of their content. The findings reveal that there is a significant correlation between monitored flight data signals and given flight data phases. In addition, the clusters of flight regimes can be determined and observed on the maps. This suggests that further flight data processing schemes can use the same data marking and mapping themes regarding flight phases when working on a regime basis. The contribution of the research is the grouping of real data flows produced by in-flight sensors for aircraft monitoring purposes, thus visualising the evolution of the signal monitored on a real aircraft.</description><identifier>ISSN: 0001-9240</identifier><identifier>EISSN: 2059-6464</identifier><identifier>DOI: 10.1017/aer.2023.71</identifier><language>eng</language><publisher>London: Cambridge University Press</publisher><subject>Aircraft ; Cluster analysis ; Clustering ; Data analysis ; Data processing ; Datasets ; Energy consumption ; Flight ; In-flight monitoring ; Neighborhoods ; Neurons ; Phases ; Representations ; Self organizing maps ; Signal monitoring ; Signal processing ; Topology</subject><ispartof>Aeronautical journal, 2023-10, Vol.127 (1316), p.1817-1831</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press on behalf of Royal Aeronautical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-2c6f510b424e374e57def746fe146f91ec9913f9f9124e02f7f72f07fa4f478a3</cites><orcidid>0000-0003-3687-3703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids></links><search><creatorcontrib>Bektas, O.</creatorcontrib><title>Visualising flight regimes using self-organising maps</title><title>Aeronautical journal</title><description>The purpose of this paper is to group the flight data phases based on the sensor readings that are most distinctive and to create a representation of the higher-dimensional input space as a two-dimensional cluster map. The research design includes a self-organising map framework that provides spatially organised representations of flight signal features and abstractions. Flight data are mapped on a topology-preserving organisation that describes the similarity of their content. The findings reveal that there is a significant correlation between monitored flight data signals and given flight data phases. In addition, the clusters of flight regimes can be determined and observed on the maps. This suggests that further flight data processing schemes can use the same data marking and mapping themes regarding flight phases when working on a regime basis. The contribution of the research is the grouping of real data flows produced by in-flight sensors for aircraft monitoring purposes, thus visualising the evolution of the signal monitored on a real aircraft.</description><subject>Aircraft</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Energy consumption</subject><subject>Flight</subject><subject>In-flight monitoring</subject><subject>Neighborhoods</subject><subject>Neurons</subject><subject>Phases</subject><subject>Representations</subject><subject>Self organizing maps</subject><subject>Signal monitoring</subject><subject>Signal processing</subject><subject>Topology</subject><issn>0001-9240</issn><issn>2059-6464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE1LxDAQhoMoWFdP_oGCR0mdfDWboyy6Cgte1GuINVOztNuatAf_vVnrZWYYHt4XHkKuGVQMmL5zPlYcuKg0OyEFB2VoLWt5SgoAYNRwCefkIqU9gAAuZUHUe0iz60IKh7bELrRfUxl9G3qfyvnvmXyHdIitOyxQ78Z0Sc7Qdclf_e8VeXt8eN080d3L9nlzv6MNZ2aivKlRMfiQXHqhpVf606OWNXqWh2G-MYYJNPnMBHDUqDmCRidR6rUTK3Kz5I5x-J59mux-mOMhV1q-NpIrEEpl6nahmjikFD3aMYbexR_LwB692OzFHr1YzcQv16dVAA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Bektas, O.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3687-3703</orcidid></search><sort><creationdate>20231001</creationdate><title>Visualising flight regimes using self-organising maps</title><author>Bektas, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-2c6f510b424e374e57def746fe146f91ec9913f9f9124e02f7f72f07fa4f478a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aircraft</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Energy consumption</topic><topic>Flight</topic><topic>In-flight monitoring</topic><topic>Neighborhoods</topic><topic>Neurons</topic><topic>Phases</topic><topic>Representations</topic><topic>Self organizing maps</topic><topic>Signal monitoring</topic><topic>Signal processing</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bektas, O.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Aeronautical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bektas, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualising flight regimes using self-organising maps</atitle><jtitle>Aeronautical journal</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>127</volume><issue>1316</issue><spage>1817</spage><epage>1831</epage><pages>1817-1831</pages><issn>0001-9240</issn><eissn>2059-6464</eissn><abstract>The purpose of this paper is to group the flight data phases based on the sensor readings that are most distinctive and to create a representation of the higher-dimensional input space as a two-dimensional cluster map. The research design includes a self-organising map framework that provides spatially organised representations of flight signal features and abstractions. Flight data are mapped on a topology-preserving organisation that describes the similarity of their content. The findings reveal that there is a significant correlation between monitored flight data signals and given flight data phases. In addition, the clusters of flight regimes can be determined and observed on the maps. This suggests that further flight data processing schemes can use the same data marking and mapping themes regarding flight phases when working on a regime basis. The contribution of the research is the grouping of real data flows produced by in-flight sensors for aircraft monitoring purposes, thus visualising the evolution of the signal monitored on a real aircraft.</abstract><cop>London</cop><pub>Cambridge University Press</pub><doi>10.1017/aer.2023.71</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3687-3703</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-9240
ispartof Aeronautical journal, 2023-10, Vol.127 (1316), p.1817-1831
issn 0001-9240
2059-6464
language eng
recordid cdi_proquest_journals_2894250355
source Cambridge University Press Journals Complete
subjects Aircraft
Cluster analysis
Clustering
Data analysis
Data processing
Datasets
Energy consumption
Flight
In-flight monitoring
Neighborhoods
Neurons
Phases
Representations
Self organizing maps
Signal monitoring
Signal processing
Topology
title Visualising flight regimes using self-organising maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T12%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualising%20flight%20regimes%20using%20self-organising%20maps&rft.jtitle=Aeronautical%20journal&rft.au=Bektas,%20O.&rft.date=2023-10-01&rft.volume=127&rft.issue=1316&rft.spage=1817&rft.epage=1831&rft.pages=1817-1831&rft.issn=0001-9240&rft.eissn=2059-6464&rft_id=info:doi/10.1017/aer.2023.71&rft_dat=%3Cproquest_cross%3E2894250355%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894250355&rft_id=info:pmid/&rfr_iscdi=true