Data Acquisition: A New Frontier in Data-centric AI
As Machine Learning (ML) systems continue to grow, the demand for relevant and comprehensive datasets becomes imperative. There is limited study on the challenges of data acquisition due to ad-hoc processes and lack of consistent methodologies. We first present an investigation of current data marke...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-11 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chen, Lingjiao Acun, Bilge Ardalani, Newsha Sun, Yifan Kang, Feiyang Lyu, Hanrui Kwon, Yongchan Jia, Ruoxi Carole-Jean Wu Zaharia, Matei Zou, James |
description | As Machine Learning (ML) systems continue to grow, the demand for relevant and comprehensive datasets becomes imperative. There is limited study on the challenges of data acquisition due to ad-hoc processes and lack of consistent methodologies. We first present an investigation of current data marketplaces, revealing lack of platforms offering detailed information about datasets, transparent pricing, standardized data formats. With the objective of inciting participation from the data-centric AI community, we then introduce the DAM challenge, a benchmark to model the interaction between the data providers and acquirers. The benchmark was released as a part of DataPerf. Our evaluation of the submitted strategies underlines the need for effective data acquisition strategies in ML. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2894146355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894146355</sourcerecordid><originalsourceid>FETCH-proquest_journals_28941463553</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdkksSVRwTC4szSzOLMnMz7NScFTwSy1XcCvKzyvJTC1SyMxTAKnRTU7NKynKTFZw9ORhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjC0sTQxMzY6BdxKkCAHkIMtc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894146355</pqid></control><display><type>article</type><title>Data Acquisition: A New Frontier in Data-centric AI</title><source>Free E- Journals</source><creator>Chen, Lingjiao ; Acun, Bilge ; Ardalani, Newsha ; Sun, Yifan ; Kang, Feiyang ; Lyu, Hanrui ; Kwon, Yongchan ; Jia, Ruoxi ; Carole-Jean Wu ; Zaharia, Matei ; Zou, James</creator><creatorcontrib>Chen, Lingjiao ; Acun, Bilge ; Ardalani, Newsha ; Sun, Yifan ; Kang, Feiyang ; Lyu, Hanrui ; Kwon, Yongchan ; Jia, Ruoxi ; Carole-Jean Wu ; Zaharia, Matei ; Zou, James</creatorcontrib><description>As Machine Learning (ML) systems continue to grow, the demand for relevant and comprehensive datasets becomes imperative. There is limited study on the challenges of data acquisition due to ad-hoc processes and lack of consistent methodologies. We first present an investigation of current data marketplaces, revealing lack of platforms offering detailed information about datasets, transparent pricing, standardized data formats. With the objective of inciting participation from the data-centric AI community, we then introduce the DAM challenge, a benchmark to model the interaction between the data providers and acquirers. The benchmark was released as a part of DataPerf. Our evaluation of the submitted strategies underlines the need for effective data acquisition strategies in ML.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Benchmarks ; Community participation ; Data acquisition ; Datasets ; Machine learning</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Chen, Lingjiao</creatorcontrib><creatorcontrib>Acun, Bilge</creatorcontrib><creatorcontrib>Ardalani, Newsha</creatorcontrib><creatorcontrib>Sun, Yifan</creatorcontrib><creatorcontrib>Kang, Feiyang</creatorcontrib><creatorcontrib>Lyu, Hanrui</creatorcontrib><creatorcontrib>Kwon, Yongchan</creatorcontrib><creatorcontrib>Jia, Ruoxi</creatorcontrib><creatorcontrib>Carole-Jean Wu</creatorcontrib><creatorcontrib>Zaharia, Matei</creatorcontrib><creatorcontrib>Zou, James</creatorcontrib><title>Data Acquisition: A New Frontier in Data-centric AI</title><title>arXiv.org</title><description>As Machine Learning (ML) systems continue to grow, the demand for relevant and comprehensive datasets becomes imperative. There is limited study on the challenges of data acquisition due to ad-hoc processes and lack of consistent methodologies. We first present an investigation of current data marketplaces, revealing lack of platforms offering detailed information about datasets, transparent pricing, standardized data formats. With the objective of inciting participation from the data-centric AI community, we then introduce the DAM challenge, a benchmark to model the interaction between the data providers and acquirers. The benchmark was released as a part of DataPerf. Our evaluation of the submitted strategies underlines the need for effective data acquisition strategies in ML.</description><subject>Benchmarks</subject><subject>Community participation</subject><subject>Data acquisition</subject><subject>Datasets</subject><subject>Machine learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdkksSVRwTC4szSzOLMnMz7NScFTwSy1XcCvKzyvJTC1SyMxTAKnRTU7NKynKTFZw9ORhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjC0sTQxMzY6BdxKkCAHkIMtc</recordid><startdate>20231122</startdate><enddate>20231122</enddate><creator>Chen, Lingjiao</creator><creator>Acun, Bilge</creator><creator>Ardalani, Newsha</creator><creator>Sun, Yifan</creator><creator>Kang, Feiyang</creator><creator>Lyu, Hanrui</creator><creator>Kwon, Yongchan</creator><creator>Jia, Ruoxi</creator><creator>Carole-Jean Wu</creator><creator>Zaharia, Matei</creator><creator>Zou, James</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231122</creationdate><title>Data Acquisition: A New Frontier in Data-centric AI</title><author>Chen, Lingjiao ; Acun, Bilge ; Ardalani, Newsha ; Sun, Yifan ; Kang, Feiyang ; Lyu, Hanrui ; Kwon, Yongchan ; Jia, Ruoxi ; Carole-Jean Wu ; Zaharia, Matei ; Zou, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28941463553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Benchmarks</topic><topic>Community participation</topic><topic>Data acquisition</topic><topic>Datasets</topic><topic>Machine learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lingjiao</creatorcontrib><creatorcontrib>Acun, Bilge</creatorcontrib><creatorcontrib>Ardalani, Newsha</creatorcontrib><creatorcontrib>Sun, Yifan</creatorcontrib><creatorcontrib>Kang, Feiyang</creatorcontrib><creatorcontrib>Lyu, Hanrui</creatorcontrib><creatorcontrib>Kwon, Yongchan</creatorcontrib><creatorcontrib>Jia, Ruoxi</creatorcontrib><creatorcontrib>Carole-Jean Wu</creatorcontrib><creatorcontrib>Zaharia, Matei</creatorcontrib><creatorcontrib>Zou, James</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lingjiao</au><au>Acun, Bilge</au><au>Ardalani, Newsha</au><au>Sun, Yifan</au><au>Kang, Feiyang</au><au>Lyu, Hanrui</au><au>Kwon, Yongchan</au><au>Jia, Ruoxi</au><au>Carole-Jean Wu</au><au>Zaharia, Matei</au><au>Zou, James</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Data Acquisition: A New Frontier in Data-centric AI</atitle><jtitle>arXiv.org</jtitle><date>2023-11-22</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>As Machine Learning (ML) systems continue to grow, the demand for relevant and comprehensive datasets becomes imperative. There is limited study on the challenges of data acquisition due to ad-hoc processes and lack of consistent methodologies. We first present an investigation of current data marketplaces, revealing lack of platforms offering detailed information about datasets, transparent pricing, standardized data formats. With the objective of inciting participation from the data-centric AI community, we then introduce the DAM challenge, a benchmark to model the interaction between the data providers and acquirers. The benchmark was released as a part of DataPerf. Our evaluation of the submitted strategies underlines the need for effective data acquisition strategies in ML.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2894146355 |
source | Free E- Journals |
subjects | Benchmarks Community participation Data acquisition Datasets Machine learning |
title | Data Acquisition: A New Frontier in Data-centric AI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A38%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Data%20Acquisition:%20A%20New%20Frontier%20in%20Data-centric%20AI&rft.jtitle=arXiv.org&rft.au=Chen,%20Lingjiao&rft.date=2023-11-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2894146355%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894146355&rft_id=info:pmid/&rfr_iscdi=true |