Properties of Quiet Magnetotail Plasma Sheet at Lunar Distances

The Earth's magnetotail at lunar distances (R ≈ 60 RE) serves as a unique laboratory to study plasma dynamics in a weak, highly fluctuating magnetic field with a strong magnetic field gradient. In particular, studies of the of quiet‐time plasma in the lunar‐distant magnetotail can inform us abo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2023-11, Vol.128 (11), p.n/a
Hauptverfasser: Runov, A., Angelopoulos, V., Khurana, K., Liu, J., Balikhin, M., Artemyev, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title Journal of geophysical research. Space physics
container_volume 128
creator Runov, A.
Angelopoulos, V.
Khurana, K.
Liu, J.
Balikhin, M.
Artemyev, A. V.
description The Earth's magnetotail at lunar distances (R ≈ 60 RE) serves as a unique laboratory to study plasma dynamics in a weak, highly fluctuating magnetic field with a strong magnetic field gradient. In particular, studies of the of quiet‐time plasma in the lunar‐distant magnetotail can inform us about plasma entry to the magnetosphere and sources of magnetospheric plasma populations. We use the data collected by the two lunar‐orbiting Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) spacecraft during its 2013–2019 magnetotail traversals to infer the average thermodynamic and spectral properties of plasma populations in the quiet‐time (i.e., low geomagnetic activity and absence of fast plasma flows) magnetotail at lunar distances. We found that plasma temperature and density in the quiet‐time magnetotail at R ≈ 60 RE are organized by the magnetic field. Three distinct regions with plasma β ≫ 1, β ∼ 1, and β ≪ 1, the central plasma sheet (CPS), outer plasma sheet (OPS), and lobes are sampled. We found that temperatures and energy spectra of ion populations in CPS, OPS, and lobes regimes are different: the hotter CPS temperatures scale with the kinetic energy of solar wind protons; cold OPS/lobe ions are, likely, of ionospheric origin. The ion and electron particle spectra in CPS, OPS, and lobes are nonthermal and reasonably well fitted by the Kappa function, with κ exponent varying between 2.5 and 3.5. Plain Language Summary Earth's only natural satellite, the Moon orbits around the Earth at a distance of about 239,000 miles (385,000 km). The two lunar‐orbiting Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) spacecraft orbit around the Moon in stable equatorial, high‐eccentricity orbits, of 100‐km × 19,000‐km altitude. The Moon and the ARTEMIS satellites spend about 25 days in the solar wind and 3–4 days inside the Earth's magnetosphere in the magnetotail. Using the comprehensive instrumentation of the ARTEMIS satellites, we study properties of the plasma and the magnetic field in the Earth's magnetotail at lunar distances. Our statistical results are valuable for the NASA Lunar Gateway HERMES mission preparation. Key Points We examine the properties of plasma populations in the magnetotail at R ≈ 60 RE under quiet conditions Non‐Maxwellian ion and electron populations dominate at βi ≤ 1 and βi > 1 regimes Average ion and electron equatorial temperatures
doi_str_mv 10.1029/2023JA031908
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2894096324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894096324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3073-a53e41a892a60249c1fc030f60bc1fabe35203d5ec5d6df5567a0e64995076d13</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWLQ3P0DAq6uTzCZNTlKqVkvF-u8c0t2sbtnu1iSL9NsbqYIn5zKPmR_zmEfICYNzBlxfcOA4GwMyDWqPDDiTOtM58P1fjQoOyTCEFaRSacTEgFwufLdxPtYu0K6ij33tIr23b62LXbR1QxeNDWtLn99dWthI531rPb2qQ7Rt4cIxOahsE9zwpx-R15vrl8ltNn-Y3k3G86xAGGFmBbqcWaW5lcBzXbCqAIRKwjJJu3QoOGApXCFKWVZCyJEFJ3OtBYxkyfCInO7ubnz30bsQzarrfZssDVfpTS2R54k621GF70LwrjIbX6-t3xoG5jsl8zelhOMO_6wbt_2XNbPp01gophC_APh8ZkU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894096324</pqid></control><display><type>article</type><title>Properties of Quiet Magnetotail Plasma Sheet at Lunar Distances</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Runov, A. ; Angelopoulos, V. ; Khurana, K. ; Liu, J. ; Balikhin, M. ; Artemyev, A. V.</creator><creatorcontrib>Runov, A. ; Angelopoulos, V. ; Khurana, K. ; Liu, J. ; Balikhin, M. ; Artemyev, A. V.</creatorcontrib><description>The Earth's magnetotail at lunar distances (R ≈ 60 RE) serves as a unique laboratory to study plasma dynamics in a weak, highly fluctuating magnetic field with a strong magnetic field gradient. In particular, studies of the of quiet‐time plasma in the lunar‐distant magnetotail can inform us about plasma entry to the magnetosphere and sources of magnetospheric plasma populations. We use the data collected by the two lunar‐orbiting Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) spacecraft during its 2013–2019 magnetotail traversals to infer the average thermodynamic and spectral properties of plasma populations in the quiet‐time (i.e., low geomagnetic activity and absence of fast plasma flows) magnetotail at lunar distances. We found that plasma temperature and density in the quiet‐time magnetotail at R ≈ 60 RE are organized by the magnetic field. Three distinct regions with plasma β ≫ 1, β ∼ 1, and β ≪ 1, the central plasma sheet (CPS), outer plasma sheet (OPS), and lobes are sampled. We found that temperatures and energy spectra of ion populations in CPS, OPS, and lobes regimes are different: the hotter CPS temperatures scale with the kinetic energy of solar wind protons; cold OPS/lobe ions are, likely, of ionospheric origin. The ion and electron particle spectra in CPS, OPS, and lobes are nonthermal and reasonably well fitted by the Kappa function, with κ exponent varying between 2.5 and 3.5. Plain Language Summary Earth's only natural satellite, the Moon orbits around the Earth at a distance of about 239,000 miles (385,000 km). The two lunar‐orbiting Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) spacecraft orbit around the Moon in stable equatorial, high‐eccentricity orbits, of 100‐km × 19,000‐km altitude. The Moon and the ARTEMIS satellites spend about 25 days in the solar wind and 3–4 days inside the Earth's magnetosphere in the magnetotail. Using the comprehensive instrumentation of the ARTEMIS satellites, we study properties of the plasma and the magnetic field in the Earth's magnetotail at lunar distances. Our statistical results are valuable for the NASA Lunar Gateway HERMES mission preparation. Key Points We examine the properties of plasma populations in the magnetotail at R ≈ 60 RE under quiet conditions Non‐Maxwellian ion and electron populations dominate at βi ≤ 1 and βi &gt; 1 regimes Average ion and electron equatorial temperatures scale with solar wind kinetic energy</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2023JA031908</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Earth ; Earth magnetosphere ; Electrodynamics ; Energy spectra ; Geomagnetic activity ; Geomagnetic tail ; Instrumentation ; Kinetic energy ; Lobes ; Lunar orbits ; Magnetic fields ; Magnetic properties ; magnetosphere ; Magnetospheric plasma ; magnetotail ; Magnetotail plasma ; Magnetotails ; Moon ; Natural satellites ; non‐Maxwellian distribution ; Orbits ; Plasma ; Plasma dynamics ; Plasma temperature ; Populations ; Satellites ; Solar energy ; Solar wind ; Solar wind protons ; space plasma ; Spacecraft ; Spacecraft orbits ; Turbulence</subject><ispartof>Journal of geophysical research. Space physics, 2023-11, Vol.128 (11), p.n/a</ispartof><rights>2023. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3073-a53e41a892a60249c1fc030f60bc1fabe35203d5ec5d6df5567a0e64995076d13</citedby><cites>FETCH-LOGICAL-c3073-a53e41a892a60249c1fc030f60bc1fabe35203d5ec5d6df5567a0e64995076d13</cites><orcidid>0000-0001-5544-9911 ; 0000-0001-8823-4474 ; 0000-0002-2856-1171 ; 0000-0002-7489-9384 ; 0000-0001-7024-1561 ; 0000-0002-8110-5626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2023JA031908$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2023JA031908$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Runov, A.</creatorcontrib><creatorcontrib>Angelopoulos, V.</creatorcontrib><creatorcontrib>Khurana, K.</creatorcontrib><creatorcontrib>Liu, J.</creatorcontrib><creatorcontrib>Balikhin, M.</creatorcontrib><creatorcontrib>Artemyev, A. V.</creatorcontrib><title>Properties of Quiet Magnetotail Plasma Sheet at Lunar Distances</title><title>Journal of geophysical research. Space physics</title><description>The Earth's magnetotail at lunar distances (R ≈ 60 RE) serves as a unique laboratory to study plasma dynamics in a weak, highly fluctuating magnetic field with a strong magnetic field gradient. In particular, studies of the of quiet‐time plasma in the lunar‐distant magnetotail can inform us about plasma entry to the magnetosphere and sources of magnetospheric plasma populations. We use the data collected by the two lunar‐orbiting Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) spacecraft during its 2013–2019 magnetotail traversals to infer the average thermodynamic and spectral properties of plasma populations in the quiet‐time (i.e., low geomagnetic activity and absence of fast plasma flows) magnetotail at lunar distances. We found that plasma temperature and density in the quiet‐time magnetotail at R ≈ 60 RE are organized by the magnetic field. Three distinct regions with plasma β ≫ 1, β ∼ 1, and β ≪ 1, the central plasma sheet (CPS), outer plasma sheet (OPS), and lobes are sampled. We found that temperatures and energy spectra of ion populations in CPS, OPS, and lobes regimes are different: the hotter CPS temperatures scale with the kinetic energy of solar wind protons; cold OPS/lobe ions are, likely, of ionospheric origin. The ion and electron particle spectra in CPS, OPS, and lobes are nonthermal and reasonably well fitted by the Kappa function, with κ exponent varying between 2.5 and 3.5. Plain Language Summary Earth's only natural satellite, the Moon orbits around the Earth at a distance of about 239,000 miles (385,000 km). The two lunar‐orbiting Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) spacecraft orbit around the Moon in stable equatorial, high‐eccentricity orbits, of 100‐km × 19,000‐km altitude. The Moon and the ARTEMIS satellites spend about 25 days in the solar wind and 3–4 days inside the Earth's magnetosphere in the magnetotail. Using the comprehensive instrumentation of the ARTEMIS satellites, we study properties of the plasma and the magnetic field in the Earth's magnetotail at lunar distances. Our statistical results are valuable for the NASA Lunar Gateway HERMES mission preparation. Key Points We examine the properties of plasma populations in the magnetotail at R ≈ 60 RE under quiet conditions Non‐Maxwellian ion and electron populations dominate at βi ≤ 1 and βi &gt; 1 regimes Average ion and electron equatorial temperatures scale with solar wind kinetic energy</description><subject>Earth</subject><subject>Earth magnetosphere</subject><subject>Electrodynamics</subject><subject>Energy spectra</subject><subject>Geomagnetic activity</subject><subject>Geomagnetic tail</subject><subject>Instrumentation</subject><subject>Kinetic energy</subject><subject>Lobes</subject><subject>Lunar orbits</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>magnetosphere</subject><subject>Magnetospheric plasma</subject><subject>magnetotail</subject><subject>Magnetotail plasma</subject><subject>Magnetotails</subject><subject>Moon</subject><subject>Natural satellites</subject><subject>non‐Maxwellian distribution</subject><subject>Orbits</subject><subject>Plasma</subject><subject>Plasma dynamics</subject><subject>Plasma temperature</subject><subject>Populations</subject><subject>Satellites</subject><subject>Solar energy</subject><subject>Solar wind</subject><subject>Solar wind protons</subject><subject>space plasma</subject><subject>Spacecraft</subject><subject>Spacecraft orbits</subject><subject>Turbulence</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWLQ3P0DAq6uTzCZNTlKqVkvF-u8c0t2sbtnu1iSL9NsbqYIn5zKPmR_zmEfICYNzBlxfcOA4GwMyDWqPDDiTOtM58P1fjQoOyTCEFaRSacTEgFwufLdxPtYu0K6ij33tIr23b62LXbR1QxeNDWtLn99dWthI531rPb2qQ7Rt4cIxOahsE9zwpx-R15vrl8ltNn-Y3k3G86xAGGFmBbqcWaW5lcBzXbCqAIRKwjJJu3QoOGApXCFKWVZCyJEFJ3OtBYxkyfCInO7ubnz30bsQzarrfZssDVfpTS2R54k621GF70LwrjIbX6-t3xoG5jsl8zelhOMO_6wbt_2XNbPp01gophC_APh8ZkU</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Runov, A.</creator><creator>Angelopoulos, V.</creator><creator>Khurana, K.</creator><creator>Liu, J.</creator><creator>Balikhin, M.</creator><creator>Artemyev, A. V.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5544-9911</orcidid><orcidid>https://orcid.org/0000-0001-8823-4474</orcidid><orcidid>https://orcid.org/0000-0002-2856-1171</orcidid><orcidid>https://orcid.org/0000-0002-7489-9384</orcidid><orcidid>https://orcid.org/0000-0001-7024-1561</orcidid><orcidid>https://orcid.org/0000-0002-8110-5626</orcidid></search><sort><creationdate>202311</creationdate><title>Properties of Quiet Magnetotail Plasma Sheet at Lunar Distances</title><author>Runov, A. ; Angelopoulos, V. ; Khurana, K. ; Liu, J. ; Balikhin, M. ; Artemyev, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3073-a53e41a892a60249c1fc030f60bc1fabe35203d5ec5d6df5567a0e64995076d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Earth</topic><topic>Earth magnetosphere</topic><topic>Electrodynamics</topic><topic>Energy spectra</topic><topic>Geomagnetic activity</topic><topic>Geomagnetic tail</topic><topic>Instrumentation</topic><topic>Kinetic energy</topic><topic>Lobes</topic><topic>Lunar orbits</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>magnetosphere</topic><topic>Magnetospheric plasma</topic><topic>magnetotail</topic><topic>Magnetotail plasma</topic><topic>Magnetotails</topic><topic>Moon</topic><topic>Natural satellites</topic><topic>non‐Maxwellian distribution</topic><topic>Orbits</topic><topic>Plasma</topic><topic>Plasma dynamics</topic><topic>Plasma temperature</topic><topic>Populations</topic><topic>Satellites</topic><topic>Solar energy</topic><topic>Solar wind</topic><topic>Solar wind protons</topic><topic>space plasma</topic><topic>Spacecraft</topic><topic>Spacecraft orbits</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Runov, A.</creatorcontrib><creatorcontrib>Angelopoulos, V.</creatorcontrib><creatorcontrib>Khurana, K.</creatorcontrib><creatorcontrib>Liu, J.</creatorcontrib><creatorcontrib>Balikhin, M.</creatorcontrib><creatorcontrib>Artemyev, A. V.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Runov, A.</au><au>Angelopoulos, V.</au><au>Khurana, K.</au><au>Liu, J.</au><au>Balikhin, M.</au><au>Artemyev, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties of Quiet Magnetotail Plasma Sheet at Lunar Distances</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2023-11</date><risdate>2023</risdate><volume>128</volume><issue>11</issue><epage>n/a</epage><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>The Earth's magnetotail at lunar distances (R ≈ 60 RE) serves as a unique laboratory to study plasma dynamics in a weak, highly fluctuating magnetic field with a strong magnetic field gradient. In particular, studies of the of quiet‐time plasma in the lunar‐distant magnetotail can inform us about plasma entry to the magnetosphere and sources of magnetospheric plasma populations. We use the data collected by the two lunar‐orbiting Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) spacecraft during its 2013–2019 magnetotail traversals to infer the average thermodynamic and spectral properties of plasma populations in the quiet‐time (i.e., low geomagnetic activity and absence of fast plasma flows) magnetotail at lunar distances. We found that plasma temperature and density in the quiet‐time magnetotail at R ≈ 60 RE are organized by the magnetic field. Three distinct regions with plasma β ≫ 1, β ∼ 1, and β ≪ 1, the central plasma sheet (CPS), outer plasma sheet (OPS), and lobes are sampled. We found that temperatures and energy spectra of ion populations in CPS, OPS, and lobes regimes are different: the hotter CPS temperatures scale with the kinetic energy of solar wind protons; cold OPS/lobe ions are, likely, of ionospheric origin. The ion and electron particle spectra in CPS, OPS, and lobes are nonthermal and reasonably well fitted by the Kappa function, with κ exponent varying between 2.5 and 3.5. Plain Language Summary Earth's only natural satellite, the Moon orbits around the Earth at a distance of about 239,000 miles (385,000 km). The two lunar‐orbiting Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) spacecraft orbit around the Moon in stable equatorial, high‐eccentricity orbits, of 100‐km × 19,000‐km altitude. The Moon and the ARTEMIS satellites spend about 25 days in the solar wind and 3–4 days inside the Earth's magnetosphere in the magnetotail. Using the comprehensive instrumentation of the ARTEMIS satellites, we study properties of the plasma and the magnetic field in the Earth's magnetotail at lunar distances. Our statistical results are valuable for the NASA Lunar Gateway HERMES mission preparation. Key Points We examine the properties of plasma populations in the magnetotail at R ≈ 60 RE under quiet conditions Non‐Maxwellian ion and electron populations dominate at βi ≤ 1 and βi &gt; 1 regimes Average ion and electron equatorial temperatures scale with solar wind kinetic energy</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2023JA031908</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5544-9911</orcidid><orcidid>https://orcid.org/0000-0001-8823-4474</orcidid><orcidid>https://orcid.org/0000-0002-2856-1171</orcidid><orcidid>https://orcid.org/0000-0002-7489-9384</orcidid><orcidid>https://orcid.org/0000-0001-7024-1561</orcidid><orcidid>https://orcid.org/0000-0002-8110-5626</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2023-11, Vol.128 (11), p.n/a
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_journals_2894096324
source Wiley Online Library Journals Frontfile Complete
subjects Earth
Earth magnetosphere
Electrodynamics
Energy spectra
Geomagnetic activity
Geomagnetic tail
Instrumentation
Kinetic energy
Lobes
Lunar orbits
Magnetic fields
Magnetic properties
magnetosphere
Magnetospheric plasma
magnetotail
Magnetotail plasma
Magnetotails
Moon
Natural satellites
non‐Maxwellian distribution
Orbits
Plasma
Plasma dynamics
Plasma temperature
Populations
Satellites
Solar energy
Solar wind
Solar wind protons
space plasma
Spacecraft
Spacecraft orbits
Turbulence
title Properties of Quiet Magnetotail Plasma Sheet at Lunar Distances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20of%20Quiet%20Magnetotail%20Plasma%20Sheet%20at%20Lunar%20Distances&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Runov,%20A.&rft.date=2023-11&rft.volume=128&rft.issue=11&rft.epage=n/a&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2023JA031908&rft_dat=%3Cproquest_cross%3E2894096324%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894096324&rft_id=info:pmid/&rfr_iscdi=true