Surface tension measurement and calculation of model biomolecular condensates
The surface tension of liquid-like protein-rich biomolecular condensates is an emerging physical principle governing the mesoscopic interior organisation of biological cells. In this study, we present a method to evaluate the surface tension of model biomolecular condensates, through straighforward...
Gespeichert in:
Veröffentlicht in: | Soft matter 2023-11, Vol.19 (45), p.876-8716 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8716 |
---|---|
container_issue | 45 |
container_start_page | 876 |
container_title | Soft matter |
container_volume | 19 |
creator | Holland, Jack Castrejón-Pita, Alfonso A Tuinier, Remco Aarts, Dirk G. A. L Nott, Timothy J |
description | The surface tension of liquid-like protein-rich biomolecular condensates is an emerging physical principle governing the mesoscopic interior organisation of biological cells. In this study, we present a method to evaluate the surface tension of model biomolecular condensates, through straighforward sessile drop measurements of capillary lengths and condensate densities. Our approach bypasses the need for characterizing condensate viscosities, which was required in previously reported techniques. We demonstrate this method using model condensates comprising two mutants of the intrinsically disordered protein Ddx4
N
. Notably, we uncover a detrimental impact of increased protein net charge on the surface tension of Ddx4
N
condensates. Furthermore, we explore the application of Scheutjens-Fleer theory, calculating condensate surface tensions through a self-consistent mean-field framework using Flory-Huggins interaction parameters. This relatively simple theory provides semi-quantitative accuracy in predicting Ddx4
N
condensate surface tensions and enables the evaluation of molecular organisation at condensate surfaces. Our findings shed light on the molecular details of fluid-fluid interfaces in biomolecular condensates.
Straightforward sessile drop measurements of surface tension for model biomolecular condensates comprising phase-separated Ddx4
N
are presented. We compare these with theoretical calculations, based around the self-consistent Scheutjens-Fleer theory. |
doi_str_mv | 10.1039/d3sm00820g |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2894083457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894083457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-db393e6249fee438a4071aae22969a87c59b2e2f7abfac086da9c06aae00298f3</originalsourceid><addsrcrecordid>eNpd0MFKw0AQBuBFFKzVi3ch4EWE6GR3k-wepWoVWjxUwVuYbCaSkmTrbnLw7d1aqeBpBuabYfgZO0_gJgGhbyvhOwDF4eOATZJcyjhTUh3ue_F-zE68XwMIJZNswpar0dVoKBqo943to47Qj4466ocI-yoy2JqxxWE7s3XU2YraqGxsZ1vaDlxkbF-FZRzIn7KjGltPZ791yt4eH15nT_HiZf48u1vERqQwxFUptKCMS10TSaFQQp4gEuc606hyk-qSE69zLMNvoLIKtYEsCACuVS2m7Gp3d-Ps50h-KLrGG2pb7MmOvuAq5wpSSESgl__o2o6uD98FpSUoIdM8qOudMs5676guNq7p0H0VCRTbZIt7sVr-JDsP-GKHnTd795e8-AbM3HYU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894083457</pqid></control><display><type>article</type><title>Surface tension measurement and calculation of model biomolecular condensates</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Holland, Jack ; Castrejón-Pita, Alfonso A ; Tuinier, Remco ; Aarts, Dirk G. A. L ; Nott, Timothy J</creator><creatorcontrib>Holland, Jack ; Castrejón-Pita, Alfonso A ; Tuinier, Remco ; Aarts, Dirk G. A. L ; Nott, Timothy J</creatorcontrib><description>The surface tension of liquid-like protein-rich biomolecular condensates is an emerging physical principle governing the mesoscopic interior organisation of biological cells. In this study, we present a method to evaluate the surface tension of model biomolecular condensates, through straighforward sessile drop measurements of capillary lengths and condensate densities. Our approach bypasses the need for characterizing condensate viscosities, which was required in previously reported techniques. We demonstrate this method using model condensates comprising two mutants of the intrinsically disordered protein Ddx4
N
. Notably, we uncover a detrimental impact of increased protein net charge on the surface tension of Ddx4
N
condensates. Furthermore, we explore the application of Scheutjens-Fleer theory, calculating condensate surface tensions through a self-consistent mean-field framework using Flory-Huggins interaction parameters. This relatively simple theory provides semi-quantitative accuracy in predicting Ddx4
N
condensate surface tensions and enables the evaluation of molecular organisation at condensate surfaces. Our findings shed light on the molecular details of fluid-fluid interfaces in biomolecular condensates.
Straightforward sessile drop measurements of surface tension for model biomolecular condensates comprising phase-separated Ddx4
N
are presented. We compare these with theoretical calculations, based around the self-consistent Scheutjens-Fleer theory.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d3sm00820g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Condensates ; Interaction parameters ; Proteins ; Surface tension</subject><ispartof>Soft matter, 2023-11, Vol.19 (45), p.876-8716</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-db393e6249fee438a4071aae22969a87c59b2e2f7abfac086da9c06aae00298f3</citedby><cites>FETCH-LOGICAL-c350t-db393e6249fee438a4071aae22969a87c59b2e2f7abfac086da9c06aae00298f3</cites><orcidid>0000-0002-5210-4931 ; 0000-0001-6086-9582 ; 0000-0003-4995-2582 ; 0000-0002-4096-7107 ; 0000-0001-8333-015X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Holland, Jack</creatorcontrib><creatorcontrib>Castrejón-Pita, Alfonso A</creatorcontrib><creatorcontrib>Tuinier, Remco</creatorcontrib><creatorcontrib>Aarts, Dirk G. A. L</creatorcontrib><creatorcontrib>Nott, Timothy J</creatorcontrib><title>Surface tension measurement and calculation of model biomolecular condensates</title><title>Soft matter</title><description>The surface tension of liquid-like protein-rich biomolecular condensates is an emerging physical principle governing the mesoscopic interior organisation of biological cells. In this study, we present a method to evaluate the surface tension of model biomolecular condensates, through straighforward sessile drop measurements of capillary lengths and condensate densities. Our approach bypasses the need for characterizing condensate viscosities, which was required in previously reported techniques. We demonstrate this method using model condensates comprising two mutants of the intrinsically disordered protein Ddx4
N
. Notably, we uncover a detrimental impact of increased protein net charge on the surface tension of Ddx4
N
condensates. Furthermore, we explore the application of Scheutjens-Fleer theory, calculating condensate surface tensions through a self-consistent mean-field framework using Flory-Huggins interaction parameters. This relatively simple theory provides semi-quantitative accuracy in predicting Ddx4
N
condensate surface tensions and enables the evaluation of molecular organisation at condensate surfaces. Our findings shed light on the molecular details of fluid-fluid interfaces in biomolecular condensates.
Straightforward sessile drop measurements of surface tension for model biomolecular condensates comprising phase-separated Ddx4
N
are presented. We compare these with theoretical calculations, based around the self-consistent Scheutjens-Fleer theory.</description><subject>Condensates</subject><subject>Interaction parameters</subject><subject>Proteins</subject><subject>Surface tension</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0MFKw0AQBuBFFKzVi3ch4EWE6GR3k-wepWoVWjxUwVuYbCaSkmTrbnLw7d1aqeBpBuabYfgZO0_gJgGhbyvhOwDF4eOATZJcyjhTUh3ue_F-zE68XwMIJZNswpar0dVoKBqo943to47Qj4466ocI-yoy2JqxxWE7s3XU2YraqGxsZ1vaDlxkbF-FZRzIn7KjGltPZ791yt4eH15nT_HiZf48u1vERqQwxFUptKCMS10TSaFQQp4gEuc606hyk-qSE69zLMNvoLIKtYEsCACuVS2m7Gp3d-Ps50h-KLrGG2pb7MmOvuAq5wpSSESgl__o2o6uD98FpSUoIdM8qOudMs5676guNq7p0H0VCRTbZIt7sVr-JDsP-GKHnTd795e8-AbM3HYU</recordid><startdate>20231122</startdate><enddate>20231122</enddate><creator>Holland, Jack</creator><creator>Castrejón-Pita, Alfonso A</creator><creator>Tuinier, Remco</creator><creator>Aarts, Dirk G. A. L</creator><creator>Nott, Timothy J</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5210-4931</orcidid><orcidid>https://orcid.org/0000-0001-6086-9582</orcidid><orcidid>https://orcid.org/0000-0003-4995-2582</orcidid><orcidid>https://orcid.org/0000-0002-4096-7107</orcidid><orcidid>https://orcid.org/0000-0001-8333-015X</orcidid></search><sort><creationdate>20231122</creationdate><title>Surface tension measurement and calculation of model biomolecular condensates</title><author>Holland, Jack ; Castrejón-Pita, Alfonso A ; Tuinier, Remco ; Aarts, Dirk G. A. L ; Nott, Timothy J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-db393e6249fee438a4071aae22969a87c59b2e2f7abfac086da9c06aae00298f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Condensates</topic><topic>Interaction parameters</topic><topic>Proteins</topic><topic>Surface tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holland, Jack</creatorcontrib><creatorcontrib>Castrejón-Pita, Alfonso A</creatorcontrib><creatorcontrib>Tuinier, Remco</creatorcontrib><creatorcontrib>Aarts, Dirk G. A. L</creatorcontrib><creatorcontrib>Nott, Timothy J</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holland, Jack</au><au>Castrejón-Pita, Alfonso A</au><au>Tuinier, Remco</au><au>Aarts, Dirk G. A. L</au><au>Nott, Timothy J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface tension measurement and calculation of model biomolecular condensates</atitle><jtitle>Soft matter</jtitle><date>2023-11-22</date><risdate>2023</risdate><volume>19</volume><issue>45</issue><spage>876</spage><epage>8716</epage><pages>876-8716</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>The surface tension of liquid-like protein-rich biomolecular condensates is an emerging physical principle governing the mesoscopic interior organisation of biological cells. In this study, we present a method to evaluate the surface tension of model biomolecular condensates, through straighforward sessile drop measurements of capillary lengths and condensate densities. Our approach bypasses the need for characterizing condensate viscosities, which was required in previously reported techniques. We demonstrate this method using model condensates comprising two mutants of the intrinsically disordered protein Ddx4
N
. Notably, we uncover a detrimental impact of increased protein net charge on the surface tension of Ddx4
N
condensates. Furthermore, we explore the application of Scheutjens-Fleer theory, calculating condensate surface tensions through a self-consistent mean-field framework using Flory-Huggins interaction parameters. This relatively simple theory provides semi-quantitative accuracy in predicting Ddx4
N
condensate surface tensions and enables the evaluation of molecular organisation at condensate surfaces. Our findings shed light on the molecular details of fluid-fluid interfaces in biomolecular condensates.
Straightforward sessile drop measurements of surface tension for model biomolecular condensates comprising phase-separated Ddx4
N
are presented. We compare these with theoretical calculations, based around the self-consistent Scheutjens-Fleer theory.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3sm00820g</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5210-4931</orcidid><orcidid>https://orcid.org/0000-0001-6086-9582</orcidid><orcidid>https://orcid.org/0000-0003-4995-2582</orcidid><orcidid>https://orcid.org/0000-0002-4096-7107</orcidid><orcidid>https://orcid.org/0000-0001-8333-015X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2023-11, Vol.19 (45), p.876-8716 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_proquest_journals_2894083457 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Condensates Interaction parameters Proteins Surface tension |
title | Surface tension measurement and calculation of model biomolecular condensates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20tension%20measurement%20and%20calculation%20of%20model%20biomolecular%20condensates&rft.jtitle=Soft%20matter&rft.au=Holland,%20Jack&rft.date=2023-11-22&rft.volume=19&rft.issue=45&rft.spage=876&rft.epage=8716&rft.pages=876-8716&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d3sm00820g&rft_dat=%3Cproquest_cross%3E2894083457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894083457&rft_id=info:pmid/&rfr_iscdi=true |