Improving Continuous-variable Quantum Channels with Unitary Averaging
A significant hurdle for quantum information and processing using bosonic systems is stochastic phase errors which occur as the photons propagate through a channel. These errors will reduce the purity of states passing through the channel and so reducing the channels capacity. We present a scheme of...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Swain, S Nibedita Marshman, Ryan J Rohde, Peter P Lund, Austin P Solntsev, Alexander S Ralph, Timothy C |
description | A significant hurdle for quantum information and processing using bosonic systems is stochastic phase errors which occur as the photons propagate through a channel. These errors will reduce the purity of states passing through the channel and so reducing the channels capacity. We present a scheme of passive linear optical unitary averaging for protecting unknown Gaussian states transmitted through an optical channel. The scheme reduces the effect of phase noise on purity, squeezing and entanglement, thereby enhancing the channel via probabilistic error correcting protocol. The scheme is robust to loss and typically succeeds with high probability. We provide both numerical simulations and analytical approximations tailored for relevant parameters with the improvement of practical and current technology. We also show the asymptotic nature of the protocol, highlighting both current and future relevance. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2894057888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894057888</sourcerecordid><originalsourceid>FETCH-proquest_journals_28940578883</originalsourceid><addsrcrecordid>eNqNjL0KwjAURoMgWLTvEHAuxKSxcZRS0VHQudxCbFPaG81Pxbe3gw_g9A3nnG9BEi7ELlM55yuSet8zxvi-4FKKhFSX8ensZLClpcVgMNroswmcgWbQ9BoBQxxp2QGiHjx9m9DRO5oA7kOPk3bQzu2GLB8weJ3-dk22p-pWnrP5-xW1D3Vvo8MZ1VwdciYLpZT4z_oC3d47uA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894057888</pqid></control><display><type>article</type><title>Improving Continuous-variable Quantum Channels with Unitary Averaging</title><source>Freely Accessible Journals</source><creator>Swain, S Nibedita ; Marshman, Ryan J ; Rohde, Peter P ; Lund, Austin P ; Solntsev, Alexander S ; Ralph, Timothy C</creator><creatorcontrib>Swain, S Nibedita ; Marshman, Ryan J ; Rohde, Peter P ; Lund, Austin P ; Solntsev, Alexander S ; Ralph, Timothy C</creatorcontrib><description>A significant hurdle for quantum information and processing using bosonic systems is stochastic phase errors which occur as the photons propagate through a channel. These errors will reduce the purity of states passing through the channel and so reducing the channels capacity. We present a scheme of passive linear optical unitary averaging for protecting unknown Gaussian states transmitted through an optical channel. The scheme reduces the effect of phase noise on purity, squeezing and entanglement, thereby enhancing the channel via probabilistic error correcting protocol. The scheme is robust to loss and typically succeeds with high probability. We provide both numerical simulations and analytical approximations tailored for relevant parameters with the improvement of practical and current technology. We also show the asymptotic nature of the protocol, highlighting both current and future relevance.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Channels ; Continuity (mathematics) ; Low noise ; Noise levels ; Optical components ; Quantum entanglement ; Quantum phenomena</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Swain, S Nibedita</creatorcontrib><creatorcontrib>Marshman, Ryan J</creatorcontrib><creatorcontrib>Rohde, Peter P</creatorcontrib><creatorcontrib>Lund, Austin P</creatorcontrib><creatorcontrib>Solntsev, Alexander S</creatorcontrib><creatorcontrib>Ralph, Timothy C</creatorcontrib><title>Improving Continuous-variable Quantum Channels with Unitary Averaging</title><title>arXiv.org</title><description>A significant hurdle for quantum information and processing using bosonic systems is stochastic phase errors which occur as the photons propagate through a channel. These errors will reduce the purity of states passing through the channel and so reducing the channels capacity. We present a scheme of passive linear optical unitary averaging for protecting unknown Gaussian states transmitted through an optical channel. The scheme reduces the effect of phase noise on purity, squeezing and entanglement, thereby enhancing the channel via probabilistic error correcting protocol. The scheme is robust to loss and typically succeeds with high probability. We provide both numerical simulations and analytical approximations tailored for relevant parameters with the improvement of practical and current technology. We also show the asymptotic nature of the protocol, highlighting both current and future relevance.</description><subject>Channels</subject><subject>Continuity (mathematics)</subject><subject>Low noise</subject><subject>Noise levels</subject><subject>Optical components</subject><subject>Quantum entanglement</subject><subject>Quantum phenomena</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjL0KwjAURoMgWLTvEHAuxKSxcZRS0VHQudxCbFPaG81Pxbe3gw_g9A3nnG9BEi7ELlM55yuSet8zxvi-4FKKhFSX8ensZLClpcVgMNroswmcgWbQ9BoBQxxp2QGiHjx9m9DRO5oA7kOPk3bQzu2GLB8weJ3-dk22p-pWnrP5-xW1D3Vvo8MZ1VwdciYLpZT4z_oC3d47uA</recordid><startdate>20240509</startdate><enddate>20240509</enddate><creator>Swain, S Nibedita</creator><creator>Marshman, Ryan J</creator><creator>Rohde, Peter P</creator><creator>Lund, Austin P</creator><creator>Solntsev, Alexander S</creator><creator>Ralph, Timothy C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240509</creationdate><title>Improving Continuous-variable Quantum Channels with Unitary Averaging</title><author>Swain, S Nibedita ; Marshman, Ryan J ; Rohde, Peter P ; Lund, Austin P ; Solntsev, Alexander S ; Ralph, Timothy C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28940578883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Channels</topic><topic>Continuity (mathematics)</topic><topic>Low noise</topic><topic>Noise levels</topic><topic>Optical components</topic><topic>Quantum entanglement</topic><topic>Quantum phenomena</topic><toplevel>online_resources</toplevel><creatorcontrib>Swain, S Nibedita</creatorcontrib><creatorcontrib>Marshman, Ryan J</creatorcontrib><creatorcontrib>Rohde, Peter P</creatorcontrib><creatorcontrib>Lund, Austin P</creatorcontrib><creatorcontrib>Solntsev, Alexander S</creatorcontrib><creatorcontrib>Ralph, Timothy C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swain, S Nibedita</au><au>Marshman, Ryan J</au><au>Rohde, Peter P</au><au>Lund, Austin P</au><au>Solntsev, Alexander S</au><au>Ralph, Timothy C</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Improving Continuous-variable Quantum Channels with Unitary Averaging</atitle><jtitle>arXiv.org</jtitle><date>2024-05-09</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>A significant hurdle for quantum information and processing using bosonic systems is stochastic phase errors which occur as the photons propagate through a channel. These errors will reduce the purity of states passing through the channel and so reducing the channels capacity. We present a scheme of passive linear optical unitary averaging for protecting unknown Gaussian states transmitted through an optical channel. The scheme reduces the effect of phase noise on purity, squeezing and entanglement, thereby enhancing the channel via probabilistic error correcting protocol. The scheme is robust to loss and typically succeeds with high probability. We provide both numerical simulations and analytical approximations tailored for relevant parameters with the improvement of practical and current technology. We also show the asymptotic nature of the protocol, highlighting both current and future relevance.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2894057888 |
source | Freely Accessible Journals |
subjects | Channels Continuity (mathematics) Low noise Noise levels Optical components Quantum entanglement Quantum phenomena |
title | Improving Continuous-variable Quantum Channels with Unitary Averaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A50%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Improving%20Continuous-variable%20Quantum%20Channels%20with%20Unitary%20Averaging&rft.jtitle=arXiv.org&rft.au=Swain,%20S%20Nibedita&rft.date=2024-05-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2894057888%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894057888&rft_id=info:pmid/&rfr_iscdi=true |