Reference cage architecture for autonomous docking of mobile robots in automotive production systems

This paper addresses the need for high-accuracy docking in material handling processes using autonomous mobile robots in factories. To satisfy this need for the tasks, such as loading, unloading, and reaching the charging station, traditional navigation methods often rely on physical restraints at t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2023-12, Vol.129 (7-8), p.3497-3511
Hauptverfasser: Yilmaz, Abdurrahman, Vit, Aycan Deniz, Savci, Ismail Hakki, Ocakli, Hakan, Temeltas, Hakan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3511
container_issue 7-8
container_start_page 3497
container_title International journal of advanced manufacturing technology
container_volume 129
creator Yilmaz, Abdurrahman
Vit, Aycan Deniz
Savci, Ismail Hakki
Ocakli, Hakan
Temeltas, Hakan
description This paper addresses the need for high-accuracy docking in material handling processes using autonomous mobile robots in factories. To satisfy this need for the tasks, such as loading, unloading, and reaching the charging station, traditional navigation methods often rely on physical restraints at the docking stations, which limits flexibility in production lines. To achieve high-level accuracy without such restrictions, this study proposes the reference cage architecture, which utilizes multi-reference points to maintain scan-matching-based localization performance during docking. The contributions of this research include achieving sub-centimeter accuracy in pose estimation near the target pose and the development of a real-time reference selection decision mechanism. To verify the effectiveness of the proposed approach, extensive testing and validation have been conducted on the automotive production lines of the Ford Otosan Golcuk Plant. These tests consider real-world operational conditions, such as noises, disturbances, and outliers, setting this study apart from similar publications in the literature. The results demonstrate the potential of the reference cage architecture in enabling high-accuracy docking in autonomous mobile robot applications within factory environments.
doi_str_mv 10.1007/s00170-023-12456-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2894056799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894056799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-b02a217b253ee89e48acfe8949823f57e0d80bf8143689ff1a1b7bfd2d51f5313</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJsm3Toyx-wYIgeg5pOlm7bps1SYX998at4M1T5vC872QeQi45XHOA6iYC8AoYCMm4WBQlgyMy4wspmQReHJMZiFIxWZXqlJzFuMl4yUs1I-0LOgw4WKTWrJGaYN-7hDaNAanzgZox-cH3foy09fajG9bUO9r7ptsiDb7xKdJuOGC9T90X0l3w7WhT5wca9zFhH8_JiTPbiBe_75y83d-9Lh_Z6vnhaXm7YlZUkFgDwgheNaKQiKrGhTLW5WFRKyFdUSG0Chqn8l2lqp3jhjdV41rRFtwVkss5uZp68xc-R4xJb_wYhrxSi1wDRVnVdabERNngYwzo9C50vQl7zUH_2NSTTZ1t6oNNDTkkp1DM8LDG8Ff9T-obJWx5fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894056799</pqid></control><display><type>article</type><title>Reference cage architecture for autonomous docking of mobile robots in automotive production systems</title><source>SpringerLink Journals</source><creator>Yilmaz, Abdurrahman ; Vit, Aycan Deniz ; Savci, Ismail Hakki ; Ocakli, Hakan ; Temeltas, Hakan</creator><creatorcontrib>Yilmaz, Abdurrahman ; Vit, Aycan Deniz ; Savci, Ismail Hakki ; Ocakli, Hakan ; Temeltas, Hakan</creatorcontrib><description>This paper addresses the need for high-accuracy docking in material handling processes using autonomous mobile robots in factories. To satisfy this need for the tasks, such as loading, unloading, and reaching the charging station, traditional navigation methods often rely on physical restraints at the docking stations, which limits flexibility in production lines. To achieve high-level accuracy without such restrictions, this study proposes the reference cage architecture, which utilizes multi-reference points to maintain scan-matching-based localization performance during docking. The contributions of this research include achieving sub-centimeter accuracy in pose estimation near the target pose and the development of a real-time reference selection decision mechanism. To verify the effectiveness of the proposed approach, extensive testing and validation have been conducted on the automotive production lines of the Ford Otosan Golcuk Plant. These tests consider real-world operational conditions, such as noises, disturbances, and outliers, setting this study apart from similar publications in the literature. The results demonstrate the potential of the reference cage architecture in enabling high-accuracy docking in autonomous mobile robot applications within factory environments.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-023-12456-0</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Accuracy ; Assembly lines ; CAE) and Design ; Cages ; Computer-Aided Engineering (CAD ; Docking ; Engineering ; Factories ; Industrial and Production Engineering ; Industrial plants ; Materials handling ; Mechanical Engineering ; Media Management ; Original Article ; Physical restraints ; Pose estimation ; Production lines ; Robots</subject><ispartof>International journal of advanced manufacturing technology, 2023-12, Vol.129 (7-8), p.3497-3511</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-b02a217b253ee89e48acfe8949823f57e0d80bf8143689ff1a1b7bfd2d51f5313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-023-12456-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-023-12456-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yilmaz, Abdurrahman</creatorcontrib><creatorcontrib>Vit, Aycan Deniz</creatorcontrib><creatorcontrib>Savci, Ismail Hakki</creatorcontrib><creatorcontrib>Ocakli, Hakan</creatorcontrib><creatorcontrib>Temeltas, Hakan</creatorcontrib><title>Reference cage architecture for autonomous docking of mobile robots in automotive production systems</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>This paper addresses the need for high-accuracy docking in material handling processes using autonomous mobile robots in factories. To satisfy this need for the tasks, such as loading, unloading, and reaching the charging station, traditional navigation methods often rely on physical restraints at the docking stations, which limits flexibility in production lines. To achieve high-level accuracy without such restrictions, this study proposes the reference cage architecture, which utilizes multi-reference points to maintain scan-matching-based localization performance during docking. The contributions of this research include achieving sub-centimeter accuracy in pose estimation near the target pose and the development of a real-time reference selection decision mechanism. To verify the effectiveness of the proposed approach, extensive testing and validation have been conducted on the automotive production lines of the Ford Otosan Golcuk Plant. These tests consider real-world operational conditions, such as noises, disturbances, and outliers, setting this study apart from similar publications in the literature. The results demonstrate the potential of the reference cage architecture in enabling high-accuracy docking in autonomous mobile robot applications within factory environments.</description><subject>Accuracy</subject><subject>Assembly lines</subject><subject>CAE) and Design</subject><subject>Cages</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Docking</subject><subject>Engineering</subject><subject>Factories</subject><subject>Industrial and Production Engineering</subject><subject>Industrial plants</subject><subject>Materials handling</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Physical restraints</subject><subject>Pose estimation</subject><subject>Production lines</subject><subject>Robots</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJsm3Toyx-wYIgeg5pOlm7bps1SYX998at4M1T5vC872QeQi45XHOA6iYC8AoYCMm4WBQlgyMy4wspmQReHJMZiFIxWZXqlJzFuMl4yUs1I-0LOgw4WKTWrJGaYN-7hDaNAanzgZox-cH3foy09fajG9bUO9r7ptsiDb7xKdJuOGC9T90X0l3w7WhT5wca9zFhH8_JiTPbiBe_75y83d-9Lh_Z6vnhaXm7YlZUkFgDwgheNaKQiKrGhTLW5WFRKyFdUSG0Chqn8l2lqp3jhjdV41rRFtwVkss5uZp68xc-R4xJb_wYhrxSi1wDRVnVdabERNngYwzo9C50vQl7zUH_2NSTTZ1t6oNNDTkkp1DM8LDG8Ff9T-obJWx5fg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Yilmaz, Abdurrahman</creator><creator>Vit, Aycan Deniz</creator><creator>Savci, Ismail Hakki</creator><creator>Ocakli, Hakan</creator><creator>Temeltas, Hakan</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20231201</creationdate><title>Reference cage architecture for autonomous docking of mobile robots in automotive production systems</title><author>Yilmaz, Abdurrahman ; Vit, Aycan Deniz ; Savci, Ismail Hakki ; Ocakli, Hakan ; Temeltas, Hakan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-b02a217b253ee89e48acfe8949823f57e0d80bf8143689ff1a1b7bfd2d51f5313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Assembly lines</topic><topic>CAE) and Design</topic><topic>Cages</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Docking</topic><topic>Engineering</topic><topic>Factories</topic><topic>Industrial and Production Engineering</topic><topic>Industrial plants</topic><topic>Materials handling</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Physical restraints</topic><topic>Pose estimation</topic><topic>Production lines</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yilmaz, Abdurrahman</creatorcontrib><creatorcontrib>Vit, Aycan Deniz</creatorcontrib><creatorcontrib>Savci, Ismail Hakki</creatorcontrib><creatorcontrib>Ocakli, Hakan</creatorcontrib><creatorcontrib>Temeltas, Hakan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yilmaz, Abdurrahman</au><au>Vit, Aycan Deniz</au><au>Savci, Ismail Hakki</au><au>Ocakli, Hakan</au><au>Temeltas, Hakan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reference cage architecture for autonomous docking of mobile robots in automotive production systems</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>129</volume><issue>7-8</issue><spage>3497</spage><epage>3511</epage><pages>3497-3511</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>This paper addresses the need for high-accuracy docking in material handling processes using autonomous mobile robots in factories. To satisfy this need for the tasks, such as loading, unloading, and reaching the charging station, traditional navigation methods often rely on physical restraints at the docking stations, which limits flexibility in production lines. To achieve high-level accuracy without such restrictions, this study proposes the reference cage architecture, which utilizes multi-reference points to maintain scan-matching-based localization performance during docking. The contributions of this research include achieving sub-centimeter accuracy in pose estimation near the target pose and the development of a real-time reference selection decision mechanism. To verify the effectiveness of the proposed approach, extensive testing and validation have been conducted on the automotive production lines of the Ford Otosan Golcuk Plant. These tests consider real-world operational conditions, such as noises, disturbances, and outliers, setting this study apart from similar publications in the literature. The results demonstrate the potential of the reference cage architecture in enabling high-accuracy docking in autonomous mobile robot applications within factory environments.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-023-12456-0</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2023-12, Vol.129 (7-8), p.3497-3511
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2894056799
source SpringerLink Journals
subjects Accuracy
Assembly lines
CAE) and Design
Cages
Computer-Aided Engineering (CAD
Docking
Engineering
Factories
Industrial and Production Engineering
Industrial plants
Materials handling
Mechanical Engineering
Media Management
Original Article
Physical restraints
Pose estimation
Production lines
Robots
title Reference cage architecture for autonomous docking of mobile robots in automotive production systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reference%20cage%20architecture%20for%20autonomous%20docking%20of%20mobile%20robots%20in%20automotive%20production%20systems&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Yilmaz,%20Abdurrahman&rft.date=2023-12-01&rft.volume=129&rft.issue=7-8&rft.spage=3497&rft.epage=3511&rft.pages=3497-3511&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-023-12456-0&rft_dat=%3Cproquest_cross%3E2894056799%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894056799&rft_id=info:pmid/&rfr_iscdi=true