On the Polishness of the inverse semigroup Γ(X) on a compact metric space x
Let Γ ( X ) be the inverse semigroup of partial homeomorphisms between open subsets of a compact metric space X . There is a topology, denoted τ hco , that makes Γ ( X ) a topological inverse semigroup. We address the question of whether τ hco is Polish. For a 0-dimensional compact metric space X ,...
Gespeichert in:
Veröffentlicht in: | European journal of mathematics 2023-12, Vol.9 (4), Article 113 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | European journal of mathematics |
container_volume | 9 |
creator | Pérez, Jerson Uzcátegui, Carlos |
description | Let
Γ
(
X
)
be the inverse semigroup of partial homeomorphisms between open subsets of a compact metric space
X
. There is a topology, denoted
τ
hco
, that makes
Γ
(
X
)
a topological inverse semigroup. We address the question of whether
τ
hco
is Polish. For a 0-dimensional compact metric space
X
, we prove that
(
Γ
(
X
)
,
τ
hco
)
is Polish by showing that it is topologically isomorphic to a closed subsemigroup of the Polish symmetric inverse semigroup
I
(
N
)
. We present examples, similar to the classical Munn semigroups, of Polish inverse semigroups consisting of partial isomorphism on lattices of open sets. |
doi_str_mv | 10.1007/s40879-023-00671-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2894011479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894011479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-adb599cd784cc015133571f5bccbb810e5efbd16145671d23c37c5f5825864ca3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOOi8gKuAG11Ec3Jp0qUM3mBgXCjMLrRpOlOZNjXpiD6H7-UzGaeiO1fnwv-fn_MhdAL0AihVl1FQrXJCGSeUZgqI3kMTBnlOMpXp_d9eLg_RNMampBxYxjmICZovOjysHX7wmyauOxcj9vVu03SvLkSHo2ubVfDbHn9-nC3Pse9wga1v-8IOuHVDaCyOaXD47Rgd1MUmuulPPUJPN9ePszsyX9zez67mxKbMgRRVKfPcVkoLaylI4FwqqGVpbVlqoE66uqwgAyHTNxXjlisra6mZ1JmwBT9Cp-PdPviXrYuDefbb0KVIw3QuKIBQeVKxUWWDjzG42vShaYvwboCab3BmBGcSOLMDZ3Qy8dEUk7hbufB3-h_XF-JPb_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894011479</pqid></control><display><type>article</type><title>On the Polishness of the inverse semigroup Γ(X) on a compact metric space x</title><source>SpringerNature Journals</source><creator>Pérez, Jerson ; Uzcátegui, Carlos</creator><creatorcontrib>Pérez, Jerson ; Uzcátegui, Carlos</creatorcontrib><description>Let
Γ
(
X
)
be the inverse semigroup of partial homeomorphisms between open subsets of a compact metric space
X
. There is a topology, denoted
τ
hco
, that makes
Γ
(
X
)
a topological inverse semigroup. We address the question of whether
τ
hco
is Polish. For a 0-dimensional compact metric space
X
, we prove that
(
Γ
(
X
)
,
τ
hco
)
is Polish by showing that it is topologically isomorphic to a closed subsemigroup of the Polish symmetric inverse semigroup
I
(
N
)
. We present examples, similar to the classical Munn semigroups, of Polish inverse semigroups consisting of partial isomorphism on lattices of open sets.</description><identifier>ISSN: 2199-675X</identifier><identifier>EISSN: 2199-6768</identifier><identifier>DOI: 10.1007/s40879-023-00671-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebraic Geometry ; Isomorphism ; Lattices ; Mathematics ; Mathematics and Statistics ; Metric space ; Research Article ; Semigroups ; Topology</subject><ispartof>European journal of mathematics, 2023-12, Vol.9 (4), Article 113</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-adb599cd784cc015133571f5bccbb810e5efbd16145671d23c37c5f5825864ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40879-023-00671-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40879-023-00671-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Pérez, Jerson</creatorcontrib><creatorcontrib>Uzcátegui, Carlos</creatorcontrib><title>On the Polishness of the inverse semigroup Γ(X) on a compact metric space x</title><title>European journal of mathematics</title><addtitle>European Journal of Mathematics</addtitle><description>Let
Γ
(
X
)
be the inverse semigroup of partial homeomorphisms between open subsets of a compact metric space
X
. There is a topology, denoted
τ
hco
, that makes
Γ
(
X
)
a topological inverse semigroup. We address the question of whether
τ
hco
is Polish. For a 0-dimensional compact metric space
X
, we prove that
(
Γ
(
X
)
,
τ
hco
)
is Polish by showing that it is topologically isomorphic to a closed subsemigroup of the Polish symmetric inverse semigroup
I
(
N
)
. We present examples, similar to the classical Munn semigroups, of Polish inverse semigroups consisting of partial isomorphism on lattices of open sets.</description><subject>Algebraic Geometry</subject><subject>Isomorphism</subject><subject>Lattices</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Research Article</subject><subject>Semigroups</subject><subject>Topology</subject><issn>2199-675X</issn><issn>2199-6768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMtKxDAUhoMoOOi8gKuAG11Ec3Jp0qUM3mBgXCjMLrRpOlOZNjXpiD6H7-UzGaeiO1fnwv-fn_MhdAL0AihVl1FQrXJCGSeUZgqI3kMTBnlOMpXp_d9eLg_RNMampBxYxjmICZovOjysHX7wmyauOxcj9vVu03SvLkSHo2ubVfDbHn9-nC3Pse9wga1v-8IOuHVDaCyOaXD47Rgd1MUmuulPPUJPN9ePszsyX9zez67mxKbMgRRVKfPcVkoLaylI4FwqqGVpbVlqoE66uqwgAyHTNxXjlisra6mZ1JmwBT9Cp-PdPviXrYuDefbb0KVIw3QuKIBQeVKxUWWDjzG42vShaYvwboCab3BmBGcSOLMDZ3Qy8dEUk7hbufB3-h_XF-JPb_Q</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Pérez, Jerson</creator><creator>Uzcátegui, Carlos</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>On the Polishness of the inverse semigroup Γ(X) on a compact metric space x</title><author>Pérez, Jerson ; Uzcátegui, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-adb599cd784cc015133571f5bccbb810e5efbd16145671d23c37c5f5825864ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebraic Geometry</topic><topic>Isomorphism</topic><topic>Lattices</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Research Article</topic><topic>Semigroups</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Pérez, Jerson</creatorcontrib><creatorcontrib>Uzcátegui, Carlos</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>European journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez, Jerson</au><au>Uzcátegui, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Polishness of the inverse semigroup Γ(X) on a compact metric space x</atitle><jtitle>European journal of mathematics</jtitle><stitle>European Journal of Mathematics</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>9</volume><issue>4</issue><artnum>113</artnum><issn>2199-675X</issn><eissn>2199-6768</eissn><abstract>Let
Γ
(
X
)
be the inverse semigroup of partial homeomorphisms between open subsets of a compact metric space
X
. There is a topology, denoted
τ
hco
, that makes
Γ
(
X
)
a topological inverse semigroup. We address the question of whether
τ
hco
is Polish. For a 0-dimensional compact metric space
X
, we prove that
(
Γ
(
X
)
,
τ
hco
)
is Polish by showing that it is topologically isomorphic to a closed subsemigroup of the Polish symmetric inverse semigroup
I
(
N
)
. We present examples, similar to the classical Munn semigroups, of Polish inverse semigroups consisting of partial isomorphism on lattices of open sets.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40879-023-00671-8</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2199-675X |
ispartof | European journal of mathematics, 2023-12, Vol.9 (4), Article 113 |
issn | 2199-675X 2199-6768 |
language | eng |
recordid | cdi_proquest_journals_2894011479 |
source | SpringerNature Journals |
subjects | Algebraic Geometry Isomorphism Lattices Mathematics Mathematics and Statistics Metric space Research Article Semigroups Topology |
title | On the Polishness of the inverse semigroup Γ(X) on a compact metric space x |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Polishness%20of%20the%20inverse%20semigroup%20%CE%93(X)%20on%20a%20compact%20metric%20space%20x&rft.jtitle=European%20journal%20of%20mathematics&rft.au=P%C3%A9rez,%20Jerson&rft.date=2023-12-01&rft.volume=9&rft.issue=4&rft.artnum=113&rft.issn=2199-675X&rft.eissn=2199-6768&rft_id=info:doi/10.1007/s40879-023-00671-8&rft_dat=%3Cproquest_cross%3E2894011479%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894011479&rft_id=info:pmid/&rfr_iscdi=true |