Diffraction of Harmonic Shear Waves on an Elliptical Cavity Located in a Viscoelastic Medium

The problem of diffraction of harmonic shear waves on an elliptical cylindrical cavity located in a viscoelastic medium is considered. The relationship between stresses and deformations is taken into account using the integral Boltzmann–Volterra hereditary relation. The problem of a dynamic stress-s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian mathematics 2023-08, Vol.67 (8), p.44-48
Hauptverfasser: Teshaev, M. Kh, Karimov, I. M., Umarov, A. O., Zhuraev, Sh. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 8
container_start_page 44
container_title Russian mathematics
container_volume 67
creator Teshaev, M. Kh
Karimov, I. M.
Umarov, A. O.
Zhuraev, Sh. I.
description The problem of diffraction of harmonic shear waves on an elliptical cylindrical cavity located in a viscoelastic medium is considered. The relationship between stresses and deformations is taken into account using the integral Boltzmann–Volterra hereditary relation. The problem of a dynamic stress-strain state around an elliptical cavity in an unbounded viscoelastic medium under the action of harmonic shear waves is reduced to a plane problem (plane deformation) of viscoelasticity. The Lame equation reduces to the solution of the Mathieu equation with complex arguments. Its solution is expressed in terms of Mathieu functions. Numerical results are obtained for different frequencies of incident waves, angles of incidence of the transverse wave and the ratio of the axes of the elliptical cavity.
doi_str_mv 10.3103/S1066369X23080108
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2894011428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894011428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-3cc828330ae8963ef2ab6b8471467754d0379804586d8b3b79d815dd85f782543</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9Whek7mzlFpboeKiProQhkyS0ZTppCbTQv-9KRVciKt74DvnXDgIXVJyzSnhN3NKpOSyXDBOgFACR2hASy4yoGRxnHTC2Z6forMYl4Tkkgk5QO93rmmC0r3zHfYNnqqw8p3TeP5pVcBvamsjTkh1eNy2bt07rVo8UlvX7_DMa9Vbg13i-NVF7W2rYrLgR2vcZnWOThrVRnvxc4fo5X78PJpms6fJw-h2lmkmoc-41sCAc6IslJLbhqla1iAKKmRR5MIQXpRARA7SQM3rojRAc2MgbwpgueBDdHXoXQf_tbGxr5Z-E7r0smJQCkKpSP1DRA8uHXyMwTbVOriVCruKkmo_YvVnxJRhh0xM3u7Dht_m_0PfzC5yEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894011428</pqid></control><display><type>article</type><title>Diffraction of Harmonic Shear Waves on an Elliptical Cavity Located in a Viscoelastic Medium</title><source>SpringerLink Journals - AutoHoldings</source><creator>Teshaev, M. Kh ; Karimov, I. M. ; Umarov, A. O. ; Zhuraev, Sh. I.</creator><creatorcontrib>Teshaev, M. Kh ; Karimov, I. M. ; Umarov, A. O. ; Zhuraev, Sh. I.</creatorcontrib><description>The problem of diffraction of harmonic shear waves on an elliptical cylindrical cavity located in a viscoelastic medium is considered. The relationship between stresses and deformations is taken into account using the integral Boltzmann–Volterra hereditary relation. The problem of a dynamic stress-strain state around an elliptical cavity in an unbounded viscoelastic medium under the action of harmonic shear waves is reduced to a plane problem (plane deformation) of viscoelasticity. The Lame equation reduces to the solution of the Mathieu equation with complex arguments. Its solution is expressed in terms of Mathieu functions. Numerical results are obtained for different frequencies of incident waves, angles of incidence of the transverse wave and the ratio of the axes of the elliptical cavity.</description><identifier>ISSN: 1066-369X</identifier><identifier>EISSN: 1934-810X</identifier><identifier>DOI: 10.3103/S1066369X23080108</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Cylindrical waves ; Deformation ; Incidence angle ; Incident waves ; Lame functions ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Mathieu function ; Shear ; Transverse waves ; Viscoelasticity ; Wave diffraction</subject><ispartof>Russian mathematics, 2023-08, Vol.67 (8), p.44-48</ispartof><rights>Allerton Press, Inc. 2023. ISSN 1066-369X, Russian Mathematics, 2023, Vol. 67, No. 8, pp. 44–48. © Allerton Press, Inc., 2023. Russian Text © The Author(s), 2023, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, No. 8, pp. 64–70.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-3cc828330ae8963ef2ab6b8471467754d0379804586d8b3b79d815dd85f782543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1066369X23080108$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1066369X23080108$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Teshaev, M. Kh</creatorcontrib><creatorcontrib>Karimov, I. M.</creatorcontrib><creatorcontrib>Umarov, A. O.</creatorcontrib><creatorcontrib>Zhuraev, Sh. I.</creatorcontrib><title>Diffraction of Harmonic Shear Waves on an Elliptical Cavity Located in a Viscoelastic Medium</title><title>Russian mathematics</title><addtitle>Russ Math</addtitle><description>The problem of diffraction of harmonic shear waves on an elliptical cylindrical cavity located in a viscoelastic medium is considered. The relationship between stresses and deformations is taken into account using the integral Boltzmann–Volterra hereditary relation. The problem of a dynamic stress-strain state around an elliptical cavity in an unbounded viscoelastic medium under the action of harmonic shear waves is reduced to a plane problem (plane deformation) of viscoelasticity. The Lame equation reduces to the solution of the Mathieu equation with complex arguments. Its solution is expressed in terms of Mathieu functions. Numerical results are obtained for different frequencies of incident waves, angles of incidence of the transverse wave and the ratio of the axes of the elliptical cavity.</description><subject>Cylindrical waves</subject><subject>Deformation</subject><subject>Incidence angle</subject><subject>Incident waves</subject><subject>Lame functions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathieu function</subject><subject>Shear</subject><subject>Transverse waves</subject><subject>Viscoelasticity</subject><subject>Wave diffraction</subject><issn>1066-369X</issn><issn>1934-810X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9Whek7mzlFpboeKiProQhkyS0ZTppCbTQv-9KRVciKt74DvnXDgIXVJyzSnhN3NKpOSyXDBOgFACR2hASy4yoGRxnHTC2Z6forMYl4Tkkgk5QO93rmmC0r3zHfYNnqqw8p3TeP5pVcBvamsjTkh1eNy2bt07rVo8UlvX7_DMa9Vbg13i-NVF7W2rYrLgR2vcZnWOThrVRnvxc4fo5X78PJpms6fJw-h2lmkmoc-41sCAc6IslJLbhqla1iAKKmRR5MIQXpRARA7SQM3rojRAc2MgbwpgueBDdHXoXQf_tbGxr5Z-E7r0smJQCkKpSP1DRA8uHXyMwTbVOriVCruKkmo_YvVnxJRhh0xM3u7Dht_m_0PfzC5yEA</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Teshaev, M. Kh</creator><creator>Karimov, I. M.</creator><creator>Umarov, A. O.</creator><creator>Zhuraev, Sh. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230801</creationdate><title>Diffraction of Harmonic Shear Waves on an Elliptical Cavity Located in a Viscoelastic Medium</title><author>Teshaev, M. Kh ; Karimov, I. M. ; Umarov, A. O. ; Zhuraev, Sh. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-3cc828330ae8963ef2ab6b8471467754d0379804586d8b3b79d815dd85f782543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cylindrical waves</topic><topic>Deformation</topic><topic>Incidence angle</topic><topic>Incident waves</topic><topic>Lame functions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathieu function</topic><topic>Shear</topic><topic>Transverse waves</topic><topic>Viscoelasticity</topic><topic>Wave diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teshaev, M. Kh</creatorcontrib><creatorcontrib>Karimov, I. M.</creatorcontrib><creatorcontrib>Umarov, A. O.</creatorcontrib><creatorcontrib>Zhuraev, Sh. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teshaev, M. Kh</au><au>Karimov, I. M.</au><au>Umarov, A. O.</au><au>Zhuraev, Sh. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffraction of Harmonic Shear Waves on an Elliptical Cavity Located in a Viscoelastic Medium</atitle><jtitle>Russian mathematics</jtitle><stitle>Russ Math</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>67</volume><issue>8</issue><spage>44</spage><epage>48</epage><pages>44-48</pages><issn>1066-369X</issn><eissn>1934-810X</eissn><abstract>The problem of diffraction of harmonic shear waves on an elliptical cylindrical cavity located in a viscoelastic medium is considered. The relationship between stresses and deformations is taken into account using the integral Boltzmann–Volterra hereditary relation. The problem of a dynamic stress-strain state around an elliptical cavity in an unbounded viscoelastic medium under the action of harmonic shear waves is reduced to a plane problem (plane deformation) of viscoelasticity. The Lame equation reduces to the solution of the Mathieu equation with complex arguments. Its solution is expressed in terms of Mathieu functions. Numerical results are obtained for different frequencies of incident waves, angles of incidence of the transverse wave and the ratio of the axes of the elliptical cavity.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1066369X23080108</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1066-369X
ispartof Russian mathematics, 2023-08, Vol.67 (8), p.44-48
issn 1066-369X
1934-810X
language eng
recordid cdi_proquest_journals_2894011428
source SpringerLink Journals - AutoHoldings
subjects Cylindrical waves
Deformation
Incidence angle
Incident waves
Lame functions
Mathematical analysis
Mathematics
Mathematics and Statistics
Mathieu function
Shear
Transverse waves
Viscoelasticity
Wave diffraction
title Diffraction of Harmonic Shear Waves on an Elliptical Cavity Located in a Viscoelastic Medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A28%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffraction%20of%20Harmonic%20Shear%20Waves%20on%20an%20Elliptical%20Cavity%20Located%20in%20a%20Viscoelastic%20Medium&rft.jtitle=Russian%20mathematics&rft.au=Teshaev,%20M.%20Kh&rft.date=2023-08-01&rft.volume=67&rft.issue=8&rft.spage=44&rft.epage=48&rft.pages=44-48&rft.issn=1066-369X&rft.eissn=1934-810X&rft_id=info:doi/10.3103/S1066369X23080108&rft_dat=%3Cproquest_cross%3E2894011428%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894011428&rft_id=info:pmid/&rfr_iscdi=true