MOF-derived Fe–N–C electrocatalyst via a dual ligand strategy for efficient oxygen reduction in acidic media

Fe–N–C materials as popular non-Pt group metal (non-PGM) electrocatalysts demonstrated huge potential for replacing Pt-based materials for efficient oxygen reduction reaction (ORR) electrocatalysis in acidic media. Herein, a metal–organic-framework (MOF)-based dual ligand strategy is proposed to dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainable energy & fuels 2023-11, Vol.7 (23), p.5557-5564
Hauptverfasser: Sheng, Yi, Zheng, Hongmei, Hou, Jingting, Zhang, Wanying, Chen, Hong, Nie, Luanjie, Zheng, Jing, Lai, Qingxue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5564
container_issue 23
container_start_page 5557
container_title Sustainable energy & fuels
container_volume 7
creator Sheng, Yi
Zheng, Hongmei
Hou, Jingting
Zhang, Wanying
Chen, Hong
Nie, Luanjie
Zheng, Jing
Lai, Qingxue
description Fe–N–C materials as popular non-Pt group metal (non-PGM) electrocatalysts demonstrated huge potential for replacing Pt-based materials for efficient oxygen reduction reaction (ORR) electrocatalysis in acidic media. Herein, a metal–organic-framework (MOF)-based dual ligand strategy is proposed to develop advanced Fe–N–C materials with a controllable density of Fe-N x sites and electrochemically active surface area, attributed to the synergistic effect from secondary ligand manipulation and Zn evaporation during pyrolysis. As a result, the optimized catalyst exhibits an ORR half-wave potential of 0.747 V vs. RHE and long-term stability with only a 29 mV negative shift after 3000 potential cycles in 0.5 M H 2 SO 4 electrolyte. More far-reaching, this MOF-based dual ligand strategy opens a novel avenue to the precise fabrication of efficient catalysts.
doi_str_mv 10.1039/D3SE01183F
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2893983513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2893983513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-63563b62bb7b566de6df3041261d928dbdee7dd44bab25ca8d9fea5737c9ec663</originalsourceid><addsrcrecordid>eNpNkM9Kw0AYxBdRsNRefIIFb0J0_ySb5Ci1UaHag3oOm_2-lC1pUnc3xdx8B9_QJzFSQQ_DzGGYgR8h55xdcSbz61v5vGCcZ7I4IhMh8yyKcyaO_-VTMvN-wxgTXMQiSSdk97gqIkBn9wi0wK-Pz6dRc4oNmuA6o4NuBh_o3mqqKfS6oY1d6xaoD04HXA-07hzFurbGYhto9z6ssaUOoTfBdi21LdXGgjV0i2D1GTmpdeNx9utT8losXub30XJ19zC_WUZG8CxESiZKVkpUVVolSgEqqCWLuVAccpFBBYgpQBxXuhKJ0RnkNeoklanJ0Sglp-TisLtz3VuPPpSbrnfteFmKLB-ByITLsXV5aBnXee-wLnfObrUbSs7KH6jlH1T5DdOHbAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893983513</pqid></control><display><type>article</type><title>MOF-derived Fe–N–C electrocatalyst via a dual ligand strategy for efficient oxygen reduction in acidic media</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Sheng, Yi ; Zheng, Hongmei ; Hou, Jingting ; Zhang, Wanying ; Chen, Hong ; Nie, Luanjie ; Zheng, Jing ; Lai, Qingxue</creator><creatorcontrib>Sheng, Yi ; Zheng, Hongmei ; Hou, Jingting ; Zhang, Wanying ; Chen, Hong ; Nie, Luanjie ; Zheng, Jing ; Lai, Qingxue</creatorcontrib><description>Fe–N–C materials as popular non-Pt group metal (non-PGM) electrocatalysts demonstrated huge potential for replacing Pt-based materials for efficient oxygen reduction reaction (ORR) electrocatalysis in acidic media. Herein, a metal–organic-framework (MOF)-based dual ligand strategy is proposed to develop advanced Fe–N–C materials with a controllable density of Fe-N x sites and electrochemically active surface area, attributed to the synergistic effect from secondary ligand manipulation and Zn evaporation during pyrolysis. As a result, the optimized catalyst exhibits an ORR half-wave potential of 0.747 V vs. RHE and long-term stability with only a 29 mV negative shift after 3000 potential cycles in 0.5 M H 2 SO 4 electrolyte. More far-reaching, this MOF-based dual ligand strategy opens a novel avenue to the precise fabrication of efficient catalysts.</description><identifier>ISSN: 2398-4902</identifier><identifier>EISSN: 2398-4902</identifier><identifier>DOI: 10.1039/D3SE01183F</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Catalysts ; Chemical reduction ; Controllability ; Electrocatalysts ; Evaporation ; Fabrication ; Iron ; Ligands ; Metal-organic frameworks ; Oxygen reduction reactions ; Pyrolysis ; Sulfuric acid ; Synergistic effect</subject><ispartof>Sustainable energy &amp; fuels, 2023-11, Vol.7 (23), p.5557-5564</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-63563b62bb7b566de6df3041261d928dbdee7dd44bab25ca8d9fea5737c9ec663</cites><orcidid>0000-0003-3162-3756 ; 0000-0002-3494-9586</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sheng, Yi</creatorcontrib><creatorcontrib>Zheng, Hongmei</creatorcontrib><creatorcontrib>Hou, Jingting</creatorcontrib><creatorcontrib>Zhang, Wanying</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Nie, Luanjie</creatorcontrib><creatorcontrib>Zheng, Jing</creatorcontrib><creatorcontrib>Lai, Qingxue</creatorcontrib><title>MOF-derived Fe–N–C electrocatalyst via a dual ligand strategy for efficient oxygen reduction in acidic media</title><title>Sustainable energy &amp; fuels</title><description>Fe–N–C materials as popular non-Pt group metal (non-PGM) electrocatalysts demonstrated huge potential for replacing Pt-based materials for efficient oxygen reduction reaction (ORR) electrocatalysis in acidic media. Herein, a metal–organic-framework (MOF)-based dual ligand strategy is proposed to develop advanced Fe–N–C materials with a controllable density of Fe-N x sites and electrochemically active surface area, attributed to the synergistic effect from secondary ligand manipulation and Zn evaporation during pyrolysis. As a result, the optimized catalyst exhibits an ORR half-wave potential of 0.747 V vs. RHE and long-term stability with only a 29 mV negative shift after 3000 potential cycles in 0.5 M H 2 SO 4 electrolyte. More far-reaching, this MOF-based dual ligand strategy opens a novel avenue to the precise fabrication of efficient catalysts.</description><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Controllability</subject><subject>Electrocatalysts</subject><subject>Evaporation</subject><subject>Fabrication</subject><subject>Iron</subject><subject>Ligands</subject><subject>Metal-organic frameworks</subject><subject>Oxygen reduction reactions</subject><subject>Pyrolysis</subject><subject>Sulfuric acid</subject><subject>Synergistic effect</subject><issn>2398-4902</issn><issn>2398-4902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkM9Kw0AYxBdRsNRefIIFb0J0_ySb5Ci1UaHag3oOm_2-lC1pUnc3xdx8B9_QJzFSQQ_DzGGYgR8h55xdcSbz61v5vGCcZ7I4IhMh8yyKcyaO_-VTMvN-wxgTXMQiSSdk97gqIkBn9wi0wK-Pz6dRc4oNmuA6o4NuBh_o3mqqKfS6oY1d6xaoD04HXA-07hzFurbGYhto9z6ssaUOoTfBdi21LdXGgjV0i2D1GTmpdeNx9utT8losXub30XJ19zC_WUZG8CxESiZKVkpUVVolSgEqqCWLuVAccpFBBYgpQBxXuhKJ0RnkNeoklanJ0Sglp-TisLtz3VuPPpSbrnfteFmKLB-ByITLsXV5aBnXee-wLnfObrUbSs7KH6jlH1T5DdOHbAA</recordid><startdate>20231121</startdate><enddate>20231121</enddate><creator>Sheng, Yi</creator><creator>Zheng, Hongmei</creator><creator>Hou, Jingting</creator><creator>Zhang, Wanying</creator><creator>Chen, Hong</creator><creator>Nie, Luanjie</creator><creator>Zheng, Jing</creator><creator>Lai, Qingxue</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-3162-3756</orcidid><orcidid>https://orcid.org/0000-0002-3494-9586</orcidid></search><sort><creationdate>20231121</creationdate><title>MOF-derived Fe–N–C electrocatalyst via a dual ligand strategy for efficient oxygen reduction in acidic media</title><author>Sheng, Yi ; Zheng, Hongmei ; Hou, Jingting ; Zhang, Wanying ; Chen, Hong ; Nie, Luanjie ; Zheng, Jing ; Lai, Qingxue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-63563b62bb7b566de6df3041261d928dbdee7dd44bab25ca8d9fea5737c9ec663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Controllability</topic><topic>Electrocatalysts</topic><topic>Evaporation</topic><topic>Fabrication</topic><topic>Iron</topic><topic>Ligands</topic><topic>Metal-organic frameworks</topic><topic>Oxygen reduction reactions</topic><topic>Pyrolysis</topic><topic>Sulfuric acid</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheng, Yi</creatorcontrib><creatorcontrib>Zheng, Hongmei</creatorcontrib><creatorcontrib>Hou, Jingting</creatorcontrib><creatorcontrib>Zhang, Wanying</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Nie, Luanjie</creatorcontrib><creatorcontrib>Zheng, Jing</creatorcontrib><creatorcontrib>Lai, Qingxue</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Sustainable energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheng, Yi</au><au>Zheng, Hongmei</au><au>Hou, Jingting</au><au>Zhang, Wanying</au><au>Chen, Hong</au><au>Nie, Luanjie</au><au>Zheng, Jing</au><au>Lai, Qingxue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MOF-derived Fe–N–C electrocatalyst via a dual ligand strategy for efficient oxygen reduction in acidic media</atitle><jtitle>Sustainable energy &amp; fuels</jtitle><date>2023-11-21</date><risdate>2023</risdate><volume>7</volume><issue>23</issue><spage>5557</spage><epage>5564</epage><pages>5557-5564</pages><issn>2398-4902</issn><eissn>2398-4902</eissn><abstract>Fe–N–C materials as popular non-Pt group metal (non-PGM) electrocatalysts demonstrated huge potential for replacing Pt-based materials for efficient oxygen reduction reaction (ORR) electrocatalysis in acidic media. Herein, a metal–organic-framework (MOF)-based dual ligand strategy is proposed to develop advanced Fe–N–C materials with a controllable density of Fe-N x sites and electrochemically active surface area, attributed to the synergistic effect from secondary ligand manipulation and Zn evaporation during pyrolysis. As a result, the optimized catalyst exhibits an ORR half-wave potential of 0.747 V vs. RHE and long-term stability with only a 29 mV negative shift after 3000 potential cycles in 0.5 M H 2 SO 4 electrolyte. More far-reaching, this MOF-based dual ligand strategy opens a novel avenue to the precise fabrication of efficient catalysts.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D3SE01183F</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3162-3756</orcidid><orcidid>https://orcid.org/0000-0002-3494-9586</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2398-4902
ispartof Sustainable energy & fuels, 2023-11, Vol.7 (23), p.5557-5564
issn 2398-4902
2398-4902
language eng
recordid cdi_proquest_journals_2893983513
source Royal Society Of Chemistry Journals 2008-
subjects Catalysts
Chemical reduction
Controllability
Electrocatalysts
Evaporation
Fabrication
Iron
Ligands
Metal-organic frameworks
Oxygen reduction reactions
Pyrolysis
Sulfuric acid
Synergistic effect
title MOF-derived Fe–N–C electrocatalyst via a dual ligand strategy for efficient oxygen reduction in acidic media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A36%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MOF-derived%20Fe%E2%80%93N%E2%80%93C%20electrocatalyst%20via%20a%20dual%20ligand%20strategy%20for%20efficient%20oxygen%20reduction%20in%20acidic%20media&rft.jtitle=Sustainable%20energy%20&%20fuels&rft.au=Sheng,%20Yi&rft.date=2023-11-21&rft.volume=7&rft.issue=23&rft.spage=5557&rft.epage=5564&rft.pages=5557-5564&rft.issn=2398-4902&rft.eissn=2398-4902&rft_id=info:doi/10.1039/D3SE01183F&rft_dat=%3Cproquest_cross%3E2893983513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2893983513&rft_id=info:pmid/&rfr_iscdi=true