Liver segmentation and classification in computed tomography images using convolutional neural network and comparison of accuracy with support vector machine
The goal of this research is to assessthe presentation of convolutional Neural Network (CNN) and SVM classifiers in the new liver segmentation categorization using CT images. The CNN and Support Vector Machine (SVM) classifiers are used to recognise the liver CT image collection. Twenty samples were...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2821 |
creator | Reddy, N. Naveen Ramkumar, G. |
description | The goal of this research is to assessthe presentation of convolutional Neural Network (CNN) and SVM classifiers in the new liver segmentation categorization using CT images. The CNN and Support Vector Machine (SVM) classifiers are used to recognise the liver CT image collection. Twenty samples were collected and separated into two groups for this study. For ten samples, group 1 used CNN, while group 2 employed SVM with a Gpower of 0.8 for ten samples. CNN produces a credit rate of 96% accuracy, whereas SVM attains a correctness of 87.0%, according to the MATLAB simulation findings. A significant result of P 0.05 wasachieved in statistical analysis. When it came to creative categorization of liver segmentation of the datasets tested, the CNN algorithm outperformed the SVM method in present investigation. |
doi_str_mv | 10.1063/5.0158596 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2893956579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2893956579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c173t-51aa4b72b1b5aa6f5c58628c7d925874d7237b01036217a5c91b63669729e5443</originalsourceid><addsrcrecordid>eNotkF1LwzAYRoMoOKcX_oOAd0JnPpqkuZThFwy8UfCupGnaZa5JTdKN_Rj_q53d1QMvhwPvAeAWowVGnD6wBcKsYJKfgRlmDGeCY34OZgjJPCM5_boEVzFuECJSiGIGfld2ZwKMpu2MSypZ76ByNdRbFaNtrJ5O1kHtu35IpobJd74Nql8foO1UayIconXtCLid3w5HXm2hM0P4n7T34XtyjgYVbBx9voFK65HQB7i3aQ3j0Pc-JLgzOvkAO6XX1plrcNGobTQ3p52Dz-enj-Vrtnp_eVs-rjKNBU0Zw0rllSAVrphSvGGaFZwUWtSSsELktSBUVAgjygkWimmJK045l4JIw_KczsHd5O2D_xlMTOXGD2F8I5akkFQyzoQcqfuJitpOqco-jAnCocSoPOYvWXnKT_8Askh62Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2893956579</pqid></control><display><type>conference_proceeding</type><title>Liver segmentation and classification in computed tomography images using convolutional neural network and comparison of accuracy with support vector machine</title><source>AIP Journals Complete</source><creator>Reddy, N. Naveen ; Ramkumar, G.</creator><contributor>Rajak, Upendra ; Dasore, Abhishek ; Panchal, Manoj ; RamaKrishna, Konijeti ; Naik, Bukke Kiran</contributor><creatorcontrib>Reddy, N. Naveen ; Ramkumar, G. ; Rajak, Upendra ; Dasore, Abhishek ; Panchal, Manoj ; RamaKrishna, Konijeti ; Naik, Bukke Kiran</creatorcontrib><description>The goal of this research is to assessthe presentation of convolutional Neural Network (CNN) and SVM classifiers in the new liver segmentation categorization using CT images. The CNN and Support Vector Machine (SVM) classifiers are used to recognise the liver CT image collection. Twenty samples were collected and separated into two groups for this study. For ten samples, group 1 used CNN, while group 2 employed SVM with a Gpower of 0.8 for ten samples. CNN produces a credit rate of 96% accuracy, whereas SVM attains a correctness of 87.0%, according to the MATLAB simulation findings. A significant result of P 0.05 wasachieved in statistical analysis. When it came to creative categorization of liver segmentation of the datasets tested, the CNN algorithm outperformed the SVM method in present investigation.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0158596</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accuracy ; Algorithms ; Artificial neural networks ; Classification ; Classifiers ; Computed tomography ; Image segmentation ; Liver ; Medical imaging ; Statistical analysis ; Support vector machines</subject><ispartof>AIP conference proceedings, 2023, Vol.2821 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c173t-51aa4b72b1b5aa6f5c58628c7d925874d7237b01036217a5c91b63669729e5443</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0158596$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,792,4500,23913,23914,25123,27907,27908,76135</link.rule.ids></links><search><contributor>Rajak, Upendra</contributor><contributor>Dasore, Abhishek</contributor><contributor>Panchal, Manoj</contributor><contributor>RamaKrishna, Konijeti</contributor><contributor>Naik, Bukke Kiran</contributor><creatorcontrib>Reddy, N. Naveen</creatorcontrib><creatorcontrib>Ramkumar, G.</creatorcontrib><title>Liver segmentation and classification in computed tomography images using convolutional neural network and comparison of accuracy with support vector machine</title><title>AIP conference proceedings</title><description>The goal of this research is to assessthe presentation of convolutional Neural Network (CNN) and SVM classifiers in the new liver segmentation categorization using CT images. The CNN and Support Vector Machine (SVM) classifiers are used to recognise the liver CT image collection. Twenty samples were collected and separated into two groups for this study. For ten samples, group 1 used CNN, while group 2 employed SVM with a Gpower of 0.8 for ten samples. CNN produces a credit rate of 96% accuracy, whereas SVM attains a correctness of 87.0%, according to the MATLAB simulation findings. A significant result of P 0.05 wasachieved in statistical analysis. When it came to creative categorization of liver segmentation of the datasets tested, the CNN algorithm outperformed the SVM method in present investigation.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Computed tomography</subject><subject>Image segmentation</subject><subject>Liver</subject><subject>Medical imaging</subject><subject>Statistical analysis</subject><subject>Support vector machines</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkF1LwzAYRoMoOKcX_oOAd0JnPpqkuZThFwy8UfCupGnaZa5JTdKN_Rj_q53d1QMvhwPvAeAWowVGnD6wBcKsYJKfgRlmDGeCY34OZgjJPCM5_boEVzFuECJSiGIGfld2ZwKMpu2MSypZ76ByNdRbFaNtrJ5O1kHtu35IpobJd74Nql8foO1UayIconXtCLid3w5HXm2hM0P4n7T34XtyjgYVbBx9voFK65HQB7i3aQ3j0Pc-JLgzOvkAO6XX1plrcNGobTQ3p52Dz-enj-Vrtnp_eVs-rjKNBU0Zw0rllSAVrphSvGGaFZwUWtSSsELktSBUVAgjygkWimmJK045l4JIw_KczsHd5O2D_xlMTOXGD2F8I5akkFQyzoQcqfuJitpOqco-jAnCocSoPOYvWXnKT_8Askh62Q</recordid><startdate>20231121</startdate><enddate>20231121</enddate><creator>Reddy, N. Naveen</creator><creator>Ramkumar, G.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231121</creationdate><title>Liver segmentation and classification in computed tomography images using convolutional neural network and comparison of accuracy with support vector machine</title><author>Reddy, N. Naveen ; Ramkumar, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c173t-51aa4b72b1b5aa6f5c58628c7d925874d7237b01036217a5c91b63669729e5443</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Computed tomography</topic><topic>Image segmentation</topic><topic>Liver</topic><topic>Medical imaging</topic><topic>Statistical analysis</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reddy, N. Naveen</creatorcontrib><creatorcontrib>Ramkumar, G.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reddy, N. Naveen</au><au>Ramkumar, G.</au><au>Rajak, Upendra</au><au>Dasore, Abhishek</au><au>Panchal, Manoj</au><au>RamaKrishna, Konijeti</au><au>Naik, Bukke Kiran</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Liver segmentation and classification in computed tomography images using convolutional neural network and comparison of accuracy with support vector machine</atitle><btitle>AIP conference proceedings</btitle><date>2023-11-21</date><risdate>2023</risdate><volume>2821</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The goal of this research is to assessthe presentation of convolutional Neural Network (CNN) and SVM classifiers in the new liver segmentation categorization using CT images. The CNN and Support Vector Machine (SVM) classifiers are used to recognise the liver CT image collection. Twenty samples were collected and separated into two groups for this study. For ten samples, group 1 used CNN, while group 2 employed SVM with a Gpower of 0.8 for ten samples. CNN produces a credit rate of 96% accuracy, whereas SVM attains a correctness of 87.0%, according to the MATLAB simulation findings. A significant result of P 0.05 wasachieved in statistical analysis. When it came to creative categorization of liver segmentation of the datasets tested, the CNN algorithm outperformed the SVM method in present investigation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0158596</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2821 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2893956579 |
source | AIP Journals Complete |
subjects | Accuracy Algorithms Artificial neural networks Classification Classifiers Computed tomography Image segmentation Liver Medical imaging Statistical analysis Support vector machines |
title | Liver segmentation and classification in computed tomography images using convolutional neural network and comparison of accuracy with support vector machine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A00%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Liver%20segmentation%20and%20classification%20in%20computed%20tomography%20images%20using%20convolutional%20neural%20network%20and%20comparison%20of%20accuracy%20with%20support%20vector%20machine&rft.btitle=AIP%20conference%20proceedings&rft.au=Reddy,%20N.%20Naveen&rft.date=2023-11-21&rft.volume=2821&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0158596&rft_dat=%3Cproquest_scita%3E2893956579%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2893956579&rft_id=info:pmid/&rfr_iscdi=true |