Microsoft Academic Graph: When experts are not enough

An ongoing project explores the extent to which artificial intelligence (AI), specifically in the areas of natural language processing and semantic reasoning, can be exploited to facilitate the studies of science by deploying software agents equipped with natural language understanding capabilities...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantitative science studies 2020-02, Vol.1 (1), p.396-413
Hauptverfasser: Wang, Kuansan, Shen, Zhihong, Huang, Chiyuan, Wu, Chieh-Han, Dong, Yuxiao, Kanakia, Anshul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 413
container_issue 1
container_start_page 396
container_title Quantitative science studies
container_volume 1
creator Wang, Kuansan
Shen, Zhihong
Huang, Chiyuan
Wu, Chieh-Han
Dong, Yuxiao
Kanakia, Anshul
description An ongoing project explores the extent to which artificial intelligence (AI), specifically in the areas of natural language processing and semantic reasoning, can be exploited to facilitate the studies of science by deploying software agents equipped with natural language understanding capabilities to read scholarly publications on the web. The knowledge extracted by these AI agents is organized into a heterogeneous graph, called Microsoft Academic Graph (MAG), where the nodes and the edges represent the entities engaging in scholarly communications and the relationships among them, respectively. The frequently updated data set and a few software tools central to the underlying AI components are distributed under an open data license for research and commercial applications. This paper describes the design, schema, and technical and business motivations behind MAG and elaborates how MAG can be used in analytics, search, and recommendation scenarios. How AI plays an important role in avoiding various biases and human induced errors in other data sets and how the technologies can be further improved in the future are also discussed.
doi_str_mv 10.1162/qss_a_00021
format Article
fullrecord <record><control><sourceid>proquest_mit_j</sourceid><recordid>TN_cdi_proquest_journals_2893946887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_48b4b181195a48f69c4eb4efa63dcb56</doaj_id><sourcerecordid>2893946887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-6971b28bff1ba68d9324b28e6ebed916e80e945d0cc39d04ecc2649ad75bfd343</originalsourceid><addsrcrecordid>eNptkE1LAzEQhhdRsNSe_AMLHjxINdlks4ngoYjWQsWL4jHkY7ZNaTfbZCvqr3fbFanQy3zxzDvDmyTnGF1jzLKbdYxSSYRQho-SXsYoHhJCiuO9-jQZxLjYIVTkRd5L8mdngo--bNKRURZWzqTjoOr5bfo-hyqFzxpCE1MVIK18k0LlN7P5WXJSqmWEwW_uJ2-PD6_3T8Ppy3hyP5oODc1RM2SiwDrjuiyxVoxbQTLa9sBAgxWYAUcgaG6RMURYRMGY9lWhbJHr0hJK-smk07VeLWQd3EqFL-mVk7uBDzOpQuPMEiTlmmrMMRa5orxkwlDQFErFiDU6Z63WRadVB7_eQGzkwm9C1b4vMy6IoIzzoqWuOmrrSgxQ_l3FSG5tlns2t_RlR6_cntxh8u4A2RIf2GFJaMEIkRnKyHa7jd-u_rf_A6U_j_I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893946887</pqid></control><display><type>article</type><title>Microsoft Academic Graph: When experts are not enough</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Wang, Kuansan ; Shen, Zhihong ; Huang, Chiyuan ; Wu, Chieh-Han ; Dong, Yuxiao ; Kanakia, Anshul</creator><creatorcontrib>Wang, Kuansan ; Shen, Zhihong ; Huang, Chiyuan ; Wu, Chieh-Han ; Dong, Yuxiao ; Kanakia, Anshul</creatorcontrib><description>An ongoing project explores the extent to which artificial intelligence (AI), specifically in the areas of natural language processing and semantic reasoning, can be exploited to facilitate the studies of science by deploying software agents equipped with natural language understanding capabilities to read scholarly publications on the web. The knowledge extracted by these AI agents is organized into a heterogeneous graph, called Microsoft Academic Graph (MAG), where the nodes and the edges represent the entities engaging in scholarly communications and the relationships among them, respectively. The frequently updated data set and a few software tools central to the underlying AI components are distributed under an open data license for research and commercial applications. This paper describes the design, schema, and technical and business motivations behind MAG and elaborates how MAG can be used in analytics, search, and recommendation scenarios. How AI plays an important role in avoiding various biases and human induced errors in other data sets and how the technologies can be further improved in the future are also discussed.</description><identifier>ISSN: 2641-3337</identifier><identifier>EISSN: 2641-3337</identifier><identifier>DOI: 10.1162/qss_a_00021</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Agents (artificial intelligence) ; Artificial intelligence ; citation networks ; Datasets ; eigenvector centrality measure ; Graph theory ; Information processing ; knowledge graph ; Language ; Natural language ; Natural language processing ; research assessments ; saliency ranking ; Scholarly communication ; scholarly database ; Software ; Software agents</subject><ispartof>Quantitative science studies, 2020-02, Vol.1 (1), p.396-413</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-6971b28bff1ba68d9324b28e6ebed916e80e945d0cc39d04ecc2649ad75bfd343</citedby><cites>FETCH-LOGICAL-c450t-6971b28bff1ba68d9324b28e6ebed916e80e945d0cc39d04ecc2649ad75bfd343</cites><orcidid>0000-0001-7089-7966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2893946887?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,21369,27903,27904,33723,43784</link.rule.ids></links><search><creatorcontrib>Wang, Kuansan</creatorcontrib><creatorcontrib>Shen, Zhihong</creatorcontrib><creatorcontrib>Huang, Chiyuan</creatorcontrib><creatorcontrib>Wu, Chieh-Han</creatorcontrib><creatorcontrib>Dong, Yuxiao</creatorcontrib><creatorcontrib>Kanakia, Anshul</creatorcontrib><title>Microsoft Academic Graph: When experts are not enough</title><title>Quantitative science studies</title><description>An ongoing project explores the extent to which artificial intelligence (AI), specifically in the areas of natural language processing and semantic reasoning, can be exploited to facilitate the studies of science by deploying software agents equipped with natural language understanding capabilities to read scholarly publications on the web. The knowledge extracted by these AI agents is organized into a heterogeneous graph, called Microsoft Academic Graph (MAG), where the nodes and the edges represent the entities engaging in scholarly communications and the relationships among them, respectively. The frequently updated data set and a few software tools central to the underlying AI components are distributed under an open data license for research and commercial applications. This paper describes the design, schema, and technical and business motivations behind MAG and elaborates how MAG can be used in analytics, search, and recommendation scenarios. How AI plays an important role in avoiding various biases and human induced errors in other data sets and how the technologies can be further improved in the future are also discussed.</description><subject>Agents (artificial intelligence)</subject><subject>Artificial intelligence</subject><subject>citation networks</subject><subject>Datasets</subject><subject>eigenvector centrality measure</subject><subject>Graph theory</subject><subject>Information processing</subject><subject>knowledge graph</subject><subject>Language</subject><subject>Natural language</subject><subject>Natural language processing</subject><subject>research assessments</subject><subject>saliency ranking</subject><subject>Scholarly communication</subject><subject>scholarly database</subject><subject>Software</subject><subject>Software agents</subject><issn>2641-3337</issn><issn>2641-3337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptkE1LAzEQhhdRsNSe_AMLHjxINdlks4ngoYjWQsWL4jHkY7ZNaTfbZCvqr3fbFanQy3zxzDvDmyTnGF1jzLKbdYxSSYRQho-SXsYoHhJCiuO9-jQZxLjYIVTkRd5L8mdngo--bNKRURZWzqTjoOr5bfo-hyqFzxpCE1MVIK18k0LlN7P5WXJSqmWEwW_uJ2-PD6_3T8Ppy3hyP5oODc1RM2SiwDrjuiyxVoxbQTLa9sBAgxWYAUcgaG6RMURYRMGY9lWhbJHr0hJK-smk07VeLWQd3EqFL-mVk7uBDzOpQuPMEiTlmmrMMRa5orxkwlDQFErFiDU6Z63WRadVB7_eQGzkwm9C1b4vMy6IoIzzoqWuOmrrSgxQ_l3FSG5tlns2t_RlR6_cntxh8u4A2RIf2GFJaMEIkRnKyHa7jd-u_rf_A6U_j_I</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Wang, Kuansan</creator><creator>Shen, Zhihong</creator><creator>Huang, Chiyuan</creator><creator>Wu, Chieh-Han</creator><creator>Dong, Yuxiao</creator><creator>Kanakia, Anshul</creator><general>MIT Press</general><general>MIT Press Journals, The</general><general>The MIT Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7089-7966</orcidid></search><sort><creationdate>20200201</creationdate><title>Microsoft Academic Graph: When experts are not enough</title><author>Wang, Kuansan ; Shen, Zhihong ; Huang, Chiyuan ; Wu, Chieh-Han ; Dong, Yuxiao ; Kanakia, Anshul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-6971b28bff1ba68d9324b28e6ebed916e80e945d0cc39d04ecc2649ad75bfd343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agents (artificial intelligence)</topic><topic>Artificial intelligence</topic><topic>citation networks</topic><topic>Datasets</topic><topic>eigenvector centrality measure</topic><topic>Graph theory</topic><topic>Information processing</topic><topic>knowledge graph</topic><topic>Language</topic><topic>Natural language</topic><topic>Natural language processing</topic><topic>research assessments</topic><topic>saliency ranking</topic><topic>Scholarly communication</topic><topic>scholarly database</topic><topic>Software</topic><topic>Software agents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kuansan</creatorcontrib><creatorcontrib>Shen, Zhihong</creatorcontrib><creatorcontrib>Huang, Chiyuan</creatorcontrib><creatorcontrib>Wu, Chieh-Han</creatorcontrib><creatorcontrib>Dong, Yuxiao</creatorcontrib><creatorcontrib>Kanakia, Anshul</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Quantitative science studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kuansan</au><au>Shen, Zhihong</au><au>Huang, Chiyuan</au><au>Wu, Chieh-Han</au><au>Dong, Yuxiao</au><au>Kanakia, Anshul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microsoft Academic Graph: When experts are not enough</atitle><jtitle>Quantitative science studies</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>1</volume><issue>1</issue><spage>396</spage><epage>413</epage><pages>396-413</pages><issn>2641-3337</issn><eissn>2641-3337</eissn><abstract>An ongoing project explores the extent to which artificial intelligence (AI), specifically in the areas of natural language processing and semantic reasoning, can be exploited to facilitate the studies of science by deploying software agents equipped with natural language understanding capabilities to read scholarly publications on the web. The knowledge extracted by these AI agents is organized into a heterogeneous graph, called Microsoft Academic Graph (MAG), where the nodes and the edges represent the entities engaging in scholarly communications and the relationships among them, respectively. The frequently updated data set and a few software tools central to the underlying AI components are distributed under an open data license for research and commercial applications. This paper describes the design, schema, and technical and business motivations behind MAG and elaborates how MAG can be used in analytics, search, and recommendation scenarios. How AI plays an important role in avoiding various biases and human induced errors in other data sets and how the technologies can be further improved in the future are also discussed.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><doi>10.1162/qss_a_00021</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7089-7966</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2641-3337
ispartof Quantitative science studies, 2020-02, Vol.1 (1), p.396-413
issn 2641-3337
2641-3337
language eng
recordid cdi_proquest_journals_2893946887
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; ProQuest Central
subjects Agents (artificial intelligence)
Artificial intelligence
citation networks
Datasets
eigenvector centrality measure
Graph theory
Information processing
knowledge graph
Language
Natural language
Natural language processing
research assessments
saliency ranking
Scholarly communication
scholarly database
Software
Software agents
title Microsoft Academic Graph: When experts are not enough
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A19%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_mit_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microsoft%20Academic%20Graph:%20When%20experts%20are%20not%20enough&rft.jtitle=Quantitative%20science%20studies&rft.au=Wang,%20Kuansan&rft.date=2020-02-01&rft.volume=1&rft.issue=1&rft.spage=396&rft.epage=413&rft.pages=396-413&rft.issn=2641-3337&rft.eissn=2641-3337&rft_id=info:doi/10.1162/qss_a_00021&rft_dat=%3Cproquest_mit_j%3E2893946887%3C/proquest_mit_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2893946887&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_48b4b181195a48f69c4eb4efa63dcb56&rfr_iscdi=true