New methods for analytical calculation of eliptic integrals applied in various physical problems

A short review will be made of elliptic integrals, widely applied in GPS (Global Positioning System) communications (accounting for General Relativity Theory-effects), cosmology, Black hole physics and celestial mechanics. Then a novel analytical method for calculation of zero-order elliptic integra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Dimitrov, B. G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2953
creator Dimitrov, B. G.
description A short review will be made of elliptic integrals, widely applied in GPS (Global Positioning System) communications (accounting for General Relativity Theory-effects), cosmology, Black hole physics and celestial mechanics. Then a novel analytical method for calculation of zero-order elliptic integrals in the Legendre form will be presented, based on the combination of several methods from the theory of elliptic functions: 1. the recurrent system of equations for higher-order elliptic integrals in two different representations. 2. uniformization of four-dimensional algebraic equations by means of the Weierstrass elliptic function 3.a variable transformation, inversely (quadratically) proportional to a new variable. The developed method is a step forward towards constructing analytical methods, which can improve the precision of the calculation of elliptic integrals, necessary both for theoretical and experimental problems.
doi_str_mv 10.1063/5.0177699
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2893944564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2893944564</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-e3b13f8a0ed9a998b0687526419887d502b28c669d88f71251527ca7018462a03</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKsH_0HAm7A13x9HKVqFohcFbzG7m7UpaXdNskr_vbHtYRiYeWZe3heAa4xmGAl6x2cISym0PgETzDmupMDiFEwQ0qwijH6cg4uU1ggRLaWagM8X9ws3Lq_6NsGuj9Bubdhl39gASzVjsNn3W9h30AU_lAX02-y-og0J2mEI3rVlAn9s9P2Y4LDapf3xEPs6uE26BGddYd3VsU_B--PD2_ypWr4unuf3y2rAlObK0RrTTlnkWm21VjUSSnIiGNZKyZYjUhPVCKFbpTqJCcecyMZKhBUTxCI6BTeHv0X4e3Qpm3U_xmImGaI01YxxwQp1e6BS4_PemRmi39i4MxiZ_wQNN8cE6R-d92Ks</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2893944564</pqid></control><display><type>conference_proceeding</type><title>New methods for analytical calculation of eliptic integrals applied in various physical problems</title><source>AIP Journals Complete</source><creator>Dimitrov, B. G.</creator><contributor>Todorov, Michail D.</contributor><creatorcontrib>Dimitrov, B. G. ; Todorov, Michail D.</creatorcontrib><description>A short review will be made of elliptic integrals, widely applied in GPS (Global Positioning System) communications (accounting for General Relativity Theory-effects), cosmology, Black hole physics and celestial mechanics. Then a novel analytical method for calculation of zero-order elliptic integrals in the Legendre form will be presented, based on the combination of several methods from the theory of elliptic functions: 1. the recurrent system of equations for higher-order elliptic integrals in two different representations. 2. uniformization of four-dimensional algebraic equations by means of the Weierstrass elliptic function 3.a variable transformation, inversely (quadratically) proportional to a new variable. The developed method is a step forward towards constructing analytical methods, which can improve the precision of the calculation of elliptic integrals, necessary both for theoretical and experimental problems.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0177699</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Celestial mechanics ; Elliptic functions ; Mathematical analysis ; Relativity</subject><ispartof>AIP conference proceedings, 2023, Vol.2953 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0177699$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>Todorov, Michail D.</contributor><creatorcontrib>Dimitrov, B. G.</creatorcontrib><title>New methods for analytical calculation of eliptic integrals applied in various physical problems</title><title>AIP conference proceedings</title><description>A short review will be made of elliptic integrals, widely applied in GPS (Global Positioning System) communications (accounting for General Relativity Theory-effects), cosmology, Black hole physics and celestial mechanics. Then a novel analytical method for calculation of zero-order elliptic integrals in the Legendre form will be presented, based on the combination of several methods from the theory of elliptic functions: 1. the recurrent system of equations for higher-order elliptic integrals in two different representations. 2. uniformization of four-dimensional algebraic equations by means of the Weierstrass elliptic function 3.a variable transformation, inversely (quadratically) proportional to a new variable. The developed method is a step forward towards constructing analytical methods, which can improve the precision of the calculation of elliptic integrals, necessary both for theoretical and experimental problems.</description><subject>Celestial mechanics</subject><subject>Elliptic functions</subject><subject>Mathematical analysis</subject><subject>Relativity</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LAzEQhoMoWKsH_0HAm7A13x9HKVqFohcFbzG7m7UpaXdNskr_vbHtYRiYeWZe3heAa4xmGAl6x2cISym0PgETzDmupMDiFEwQ0qwijH6cg4uU1ggRLaWagM8X9ws3Lq_6NsGuj9Bubdhl39gASzVjsNn3W9h30AU_lAX02-y-og0J2mEI3rVlAn9s9P2Y4LDapf3xEPs6uE26BGddYd3VsU_B--PD2_ypWr4unuf3y2rAlObK0RrTTlnkWm21VjUSSnIiGNZKyZYjUhPVCKFbpTqJCcecyMZKhBUTxCI6BTeHv0X4e3Qpm3U_xmImGaI01YxxwQp1e6BS4_PemRmi39i4MxiZ_wQNN8cE6R-d92Ks</recordid><startdate>20231120</startdate><enddate>20231120</enddate><creator>Dimitrov, B. G.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231120</creationdate><title>New methods for analytical calculation of eliptic integrals applied in various physical problems</title><author>Dimitrov, B. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-e3b13f8a0ed9a998b0687526419887d502b28c669d88f71251527ca7018462a03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Celestial mechanics</topic><topic>Elliptic functions</topic><topic>Mathematical analysis</topic><topic>Relativity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimitrov, B. G.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dimitrov, B. G.</au><au>Todorov, Michail D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>New methods for analytical calculation of eliptic integrals applied in various physical problems</atitle><btitle>AIP conference proceedings</btitle><date>2023-11-20</date><risdate>2023</risdate><volume>2953</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>A short review will be made of elliptic integrals, widely applied in GPS (Global Positioning System) communications (accounting for General Relativity Theory-effects), cosmology, Black hole physics and celestial mechanics. Then a novel analytical method for calculation of zero-order elliptic integrals in the Legendre form will be presented, based on the combination of several methods from the theory of elliptic functions: 1. the recurrent system of equations for higher-order elliptic integrals in two different representations. 2. uniformization of four-dimensional algebraic equations by means of the Weierstrass elliptic function 3.a variable transformation, inversely (quadratically) proportional to a new variable. The developed method is a step forward towards constructing analytical methods, which can improve the precision of the calculation of elliptic integrals, necessary both for theoretical and experimental problems.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0177699</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2953 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2893944564
source AIP Journals Complete
subjects Celestial mechanics
Elliptic functions
Mathematical analysis
Relativity
title New methods for analytical calculation of eliptic integrals applied in various physical problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A25%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=New%20methods%20for%20analytical%20calculation%20of%20eliptic%20integrals%20applied%20in%20various%20physical%20problems&rft.btitle=AIP%20conference%20proceedings&rft.au=Dimitrov,%20B.%20G.&rft.date=2023-11-20&rft.volume=2953&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0177699&rft_dat=%3Cproquest_scita%3E2893944564%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2893944564&rft_id=info:pmid/&rfr_iscdi=true